banner
关于合明 资讯中心
  • 微波功率放大器芯片清洗剂合明科技分享:微波高功率固态放大器技术

    微波功率放大器芯片清洗剂合明科技分享:微波高功率固态放大器技术

    微波功率放大器芯片清洗剂合明科技分享:微波高功率固态放大器技术合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。0 引言微波集成电路技术是无线系统小型化的关键技术.在毫米波集成电路中,高性能且设计紧凑的功率放大器芯片电路是市场迫切需求的产品.总的来说,微波功率放大器的芯片性能很大程度上取决于制造工艺,而每种工艺对功率放大器有着不同的特点或优势.对于工作频率不高于100GHz的芯片而言,砷化镓和氮化镓材料具有功率方面的优势[1-2].如果频率作为器件的首要考虑,那么选用磷化铟器件制作的功率放大器其频率可以高到500GHz以上[3].当然,对于工业制造来说,产品的成本也是功率放大器设计以及量产的重要因素,特别是对于消费电子产品类,互补金属氧化物半导体(CMOS)利于片上系统集成,因此具有成本优势.从应用场景来看,毫米波芯片工作于不同的频率有着不同的要求,比如在Ka波段的26.5~40GHz,目前主要用于卫星和中长距点对点通信,大功率是这个波段功率放大器的首要指标,因而氮化镓和砷化镓的功率放大器芯片是首选.对于60GHz而言,由于电磁波在该频率的衰减很大,主要潜在应用于短距离的高速通信并面向消费电子市场,因而成本较低的CMOS半导体和锗化硅器件是未来该频段芯片设计的首选[4].在本篇综述中,首先将比较毫米波固态电路芯片制造的基础工艺;然后针对不同的设计指标,介绍了相应的解决方案,包括设计构架和功率半导体芯片的设计思路;最后比较了各种功率放大器的工艺特点和设计方法,希望能为该领域的研发工作提供直观的设计参考. 1 微波芯片制造技术1.1 砷化镓当前砷化镓工艺包含两大类器件工艺:赝调制掺杂异质结场效应晶体管(pHEMT)和应变高电子迁移率晶体管(mHEMT).其中pHEMT的商用程度要高于mHEMT器件.在商用领域,比较知名的公司有Qorvo、Mimixbroad、M/A-COM和Excelics等,其中大部分的固态功率放大器工作在6GHz到120GHz附近.比如Qorvo公司的TGA4706-FC芯片可在76~83GHz的频率范围提供超过15dB的增益和14dBm的饱和输出功率.基于70nm的pHEMT器件,砷化镓毫米波固态功率放大器已经可以工作在100GHz的频率以上[5].非消费电子用途的主流的砷化镓功率放大器产品定位于6~40GHz之间,以X波段雷达和Ku、Ka 波段的卫星通信为目标市场.如果不采用分布式功率放大器结构,其带宽通常在10 GHz 之内[6-7] .由于衡量微波固态功率放大器的重要指标之一是饱和输出功率,Qorvo 公司的商用芯片TGA4916 可在29~31 GHz 的频率范围输出达到38dBm.在17~30 GHz 频段,现有的pHEMT 功率放大器的功率附加效率( PAE) 集中在25% ~ 45%之间[8-12] .应变高电子迁移率晶体管(mHEMT)的研发初衷是为了解决磷化铟和砷化镓衬底的不匹配问题,其基本方法是在砷化镓衬底中添加一层铟.这种工艺器件具有较高的晶体管截止频率和较低的噪声,已报道的用mHEMT 制作的毫米波功率放大器频率在200 GHz 以上[13-14] . 而在低于40 GHz 的频率,mHEMT 的功率放大器较少被报道,相较于pHEMT制备的功率放大器并不具备竞争优势,只有少量用于实验的低噪声放大器可供参考[15] .1.2 氮化镓氮化镓器件具有高的电子迁移率和高的击穿电压,是高效率大功率放大器设计的首选,其工作频带范围可以从直流到接近100 GHz.在0.1 和0.15 μm特征栅长的器件问世后,多个工作频率超过70 GHz的氮化镓功率放大器已被验证[16-19] .在低于30 GHz的频率,毫米波功率放大器芯片已在功率、效率和带宽方面表现出非常出众的性能. 比如ACTEL-THALES III-V 实验室研制的氮化镓功率放大器,输出功率达到43 W 的同时保持了52%的功率附加效率[20] .而由Mitsubishi Electric 公司研制的功率放大器可在14 ~ 16 GHz 频带范围输出60 W 的功率和45%的功率附加效率[21] .应用分布式放大电路拓扑,氮化镓功率放大器同时展现了其宽带和高功率的优势[22-23] .由于pHEMT 器件的商业应用已成熟多年并且优化,使得氮化镓功率放大器在30 GHz 以上还处于与砷化镓竞争的态势.在两种器件表现出相似的输出功率时,其内部技术实现路径却稍显差异[24-27] .由于氮化镓器件的高功率特性,使得用该种器件设计的功率放大电路可以用较少的晶体管进行末级合成,就能匹敌用更多砷化镓器件实现的指标.但是由于氮化镓的器件本身体积较大,需要占用较大的芯片面积,因此制作多级电路的时候往往增益不如砷化镓pHEMT 晶体管的功率放大器.1.3 硅基互补金属氧化物半导体相比砷化镓和氮化镓器件,CMOS 半导体所能提供的输出功率显得非常有限.原因是该种器件的击穿电压低,并且晶体管的电流耐受能力不高,其最大优势在于容易与高集成密度、低功耗的数字模拟系统进行一体化集成,使得系统具有成本低廉、集成度高、应用范围广的优势.由于在消费电子市场的大规模应用,最近几年有关互补金属氧化物半导体的功率放大器集成的研究成为一个热点,因为当其与模拟和数字部分集成为片上系统后,在价格、可靠性和便利性上都展现出独特的优势.目前工作频率高于15 GHz 的CMOS 功率放大器的输出功率大体在20 dBm 左右,并且正在向30 dBm推进[28] . 由于CMOS 按照摩尔定律发展,在各种半导体器件中特征尺寸制程领先,因此晶体管的截止频率较高.如果辅以分布式的电路结构,其工作带宽可达几十吉赫[29-32] .最近几年,由于60 GHz 频段附近在世界大多数国家开放为不需要购买牌照就能使用的频谱资源,而且大气传播衰减大主要面向短距离通信,所以这个频段的CMOS 功率放大器成为一个研究热点.当前该频段的功率最高水平在20 dBm 左右,功率附加效率一般小于25%[33-37] .1.4 锗化硅锗化硅(SiGe)器件的发展主要由IBM 等公司推动,采用了双极性BiCMOS 工艺,可以作为CMOS的替代选择方案,同等尺度下器件的性能和截止频率都有较大幅度的提升,并且同样具有价格低廉的优点.与工作在相同频率且性能相近的CMOS 器件比较,锗化硅异质结晶体管的比硅基互补金属氧化物半导体的耐电压,处理电流能力也稍高一筹,因而也适合用于集成微波功率放大器.在21~26 GHz 频段,锗化硅异质结晶体管放大器可提供23 dBm 的饱和功率输出且达到19.8%的功率附加效率[38] .有报道指出60 GHz 频段的功率放大器的性能有所下降,当饱和输出功率在20 dBm 时,功率附加效率值为12.7%[39] .1.5 磷化铟得益于磷化铟(InP)异质结晶体管的截止频率可以大于500 GHz,这类器件非常适用于制备工作频率在100 GHz 以上的毫米波芯片.在电路拓扑上,磷化铟固态功率放大器的拓扑大多采用多级级联、末级单管输出的方式来实现,其在G 频段的输出功率可达20 mW[40-42] .为了进一步提高该类器件的耐压特性,双异质结结构的场效应管是其改进版本[43] .当磷化铟器件应用在较低频率,比如20 GHz 的放大器设计,单级的放大结构就能提供62%的功率附加效率和20 dB 增益[44] .如果在该频段采用多路合成的方式提高输出功率,那么功率附加效率降低到37%~37.8%的区间[45-47] .2 微波高功率放大器设计技术2.1 二进制功率合成技术通常而言,在其他外界条件保持不变的情况下,微波功率放大器的输出功率能力与总的晶体管或场效应管的栅宽成正比.虽然理论上可以通过增加单个晶体管的方式增加输出功率,但是这种方法在实际应用中会造成匹配的困难和截止频率降低的问题,因为此时晶体管的输入输出阻抗过低.当单管不能满足微波功放的输出功率指标时,最常用的办法是采用二进制的方式来提高输出功率,比较经典的功率合成器有T 字形网络和Wilkisnon 功率合成器.在插入功率合成器后,放大器的效率和工作带宽会有所降低,比如文献[47]的功率放大器在多管合成的条件下其功率附加效率降为单管的一半左右.T 字形网络和Wilkisnon 功率合成器区别在于:T 形功分网络难以满足每个端口的匹配和两个合路端的隔离,而Wilkisnon 功率合成器通过在两个合路端添加电阻的方式,使所有端口达到匹配条件并事先隔离合路端口.总体而言,采用二进制方式的功率合成技术应用范围广,并且可以灵活选择需要合成的路数,因此是商用芯片中实现高功率输出的首选方式.如图1 所示的TGA4916 的商用芯片,在最后一级采用了32 路的合路器来提高输出功率,芯片面积为3.86×5.17 mm2,因此也可以发现二进制合路器在合成路数增加的时候版图面积也相应增加较大.2.2 平衡式放大器对于需要工作在宽带的功率放大器而言,输入和输出端口需要在宽带内匹配到50 Ω,以实现低的驻波系数,这样可以减少连到外部元件时增益和输出功率的降低.此时可以借助90°耦合器的方式实现两个分路内的相位差,最后在合路端同向信号相加,反射波由于存在180°的相位差而被抵消[48-50] .在集成电路设计中,Lange耦合器结构紧凑,能够很好满足宽带功率放大器的需求.在这类平衡功率放大器中,Lange 耦合器在输入和输出端口成对使用,如图2 所示.2.3 分布式放大拓扑分布式放大器设计的基本思路是利用具有电容特性的晶体管或场效应管,配合外部电感构造类似传输线的结构,使其整体具有传输线的特性,最终达到宽带匹配的效果.虽然这种结构可以实现覆盖多个波段的匹配效果,但其代价是所获得的增益和功率附加效率往往不高,功率合成的效果不如T 形和Wilkinson 功分器.但是如果行波放大拓扑配合先进的氮化镓工艺,可以弥补其在功率和效率上的不足(图3).因此,采用氮化镓工艺设计的分布式功率放大器可以获取很多优势,这些优势包括宽带、高功率和中等PAE 的性能[51-54] .如文献[51]中所报道的分布式大器,饱和输出功率为38 ~41dBm 的连续波,并且PAE 维持在19%~39%之间.图3 氮化镓分布式放大器分布式放大电路拓扑与其他结构灵活组合,可以产生一系列新的放大电路形式来增强增益.比如串联式、共源共栅和矩阵式分布式放大器,如图4 所示.在图4a 的串联式分布式放大器,通过将3 个分布式放大器级联来提高其增益和输出功率[55] .图4a 和4b 中都采用共源共栅的连接方式提高了每个放大单元的增益.虽然这3 种电路拓扑上有区别,但是本质都是通过增加放大器增益,再加上分布式放大具有的宽带的优势,来增加功率放大器总的增益带宽积.图4 其他分布式放大器2.4 晶体管/ 场效应管叠加放大单元的改进也可以提高功率放大器的增益和输出功率,比如单级叠加晶体管或场效应管.虽然这种方式从电路拓扑上看类似于共源共栅,但是有两点区别:一是叠加晶体管/ 场效应后对电源电压的要求会相应升高,以满足支流偏置的要求,同时可以获得更高的输出功率,这种升压需要在避免器件被击穿的前提下,比如用砷化镓和氮化镓场效应管会比硅基互补金属氧化物半导体更具优势.如图5 所示的电路,在场效应管叠加后漏极电压提升到了共源级电路的2 倍,Vg2 也需要相应地提高[56] ;二是叠加技术不仅仅局限于2 个晶体管/ 场效应管,而是可以叠加3 个以上的单元.图5 叠加场效应管拓扑使用这种晶体管/ 场效应管叠加技术除了提高了功率和增益以外,另外一个优势是减少了固态功率放大器芯片所需要的面积.在设计指标给定的条件下,所需要的级联的级数在采用叠加技术后会相应减少,同时减少了级间匹配的工作量,而增加的晶体管/ 场效应管的面积相比级间匹配电路可以忽略不计.因此很多叠加式的功率放大器往往只需要输入输出端口匹配即可,以更少的芯片面积就能实现多级功率放大器的同等指标. 3 总结本文首先综述了微波固态高功率放大器的实现工艺和设计方法,目的是为设计人员提供可以参考和快速选择的技术途径.从工艺选择角度考虑,需要结合功率放大器的应用场景以及器件的工艺水平.对于远距离传输比如卫星通信,砷化镓pHEMT 和氮化镓器件具有先天的工艺优势.而对于面向消费电子的产品,锗化硅和硅基互补金属氧化物半导体固态功放可以满足片上系统的设计指标,进而降低系统的整体成本.而对于亚毫米波和太赫兹固态功放,可选用截止工作频率较高的磷化铟和砷化镓mHEMT 器件.然后本文介绍了各种固态功率放大器的设计技术.二进制功率合成技术是实现高功率输出固态放大器的首选,可以灵活选择合成的路数,但是电路拓扑会随着合成路数的增加而变得复杂,并且芯片面积相应增加.平衡式放大器有助于改进放大器的输入输出的宽带匹配情况,可以配合T 形网络或者Wilkisnon 功率合成器使用.基本的分布式放大器可实最大宽带匹配效果,但是输出功率、增益和功率附加效率不佳,可以配合先进的氮化镓工艺以及改进分布放大的电路结构来弥补这三方面的不足.晶体管/ 场效应管叠加技术可以实现更少的芯片面积达到多级电路的设计指标要求,但是对直流偏置电压和半导体元件本身的击穿电压要求也会相应提高.END~文章来源:韩江安,男,博士后,新加坡科技与设计大学,主要研究方向为毫米波集成电路与系统.马凯学(通信作者),男,教授,博士生导师,电子科技大学,2016年国家杰出青年科学基金获得者,主要研究方向为毫米波集成电路与系统.针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • SMT贴装后清洗剂合明科技分享:SMT质量标准评估步骤与方式方法准则

    SMT贴装后清洗剂合明科技分享:SMT质量标准评估步骤与方式方法准则

    SMT贴装后清洗剂合明科技分享: SMT质量标准评估步骤与方式方法准则合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。一、SMT质量术语1、理想的焊点具有良好的表面润湿性,即熔融焊料在被焊金属表面上应铺展,并形成完整、均匀、连续的焊料覆盖层,其接触角应不大于90。正确的焊锡量,焊料量足够而不过多或过少良好的焊接表面,焊点表面应完整、连续和圆滑,但不要求很光亮的外观。好的焊点位置元器件的焊端或引脚在焊盘上的位置偏差在规定范围内。2、不润湿焊点上的焊料与被焊金属表面形成的接触角大于90度。3、开焊焊接后焊盘与PCB表面分离。4、吊桥( drawbridging )元器件的一端离开焊盘面向上方斜立或直立,亦即墓牌(Tomb stone)。5、桥接两个或两个以上不应相连的焊点之间的焊料相连,或焊点的焊料与相邻的导线相连。6、虚焊焊接后,焊端与焊盘之间或引脚与焊盘之间有时出现电隔离现象7、拉尖焊点中出现焊料有突出向外的毛刺,但没有与其它导体或焊点相接触8、焊料球(solder ball)焊接时粘附在印制板、阴焊膜或导体上的焊料小圆球,亦称锡珠。9、孔洞焊接处出现孔径不一的空洞10、位置偏移(skewing )焊点在平面内横向、纵向或旋转方向偏离预定位置时。11、目视检验法(visualinspection)借助照明的2~5倍的放大镜,用肉眼观察检验PCBA焊点质量12、焊接后检验(inspectionafter aoldering)PCB完成焊接后的质量检验。13、返修(reworking)为去除表面组装组件的局部缺陷的修复工艺过程。14、贴片检验 ( placement inspection )表面贴装元器件贴装时或完成后,对于是否漏贴、错位、贴错、损坏等到情况进行的质量检验。 二、SMT检验方法在SMT的检验中常采用目测检查与光学设备检查两种方法,有只采用目测法,亦有采用两种混合方法。它们都可对产品100%的检查,但若采用目测的方法时人总会疲劳,这样就无法保证员工100%进行认真检查。因此,我们要建立一个平衡的检查(inspection)与监测(monitering)的策略即建立质量过程控制点。为了保证SMT设备的正常进行,加强各工序的加工工件质量检查,从而监控其运行状态,在一些关键工序后设立质量控制点。这些控制点通常设立在如下位置:1)PCB检测 a.印制板有无变形;b.焊盘有无氧化;c、印制板表面有无划伤;检查方法:依据检测标准目测检验。2)丝印检测a.印刷是否完全;b.有无桥接;c.厚度是否均匀;d.有无塌边;e.印刷有无偏差;检查方法:依据检测标准目测检验或借助放大镜检验。3)贴片检测a.元件的贴装位置情况;b.有无掉片;c.有无错件;检查方法:依据检测标准目测检验或借助放大镜检验。4)回流焊接检测a.元件的焊接情况,有无桥接、立碑、错位、焊料球、虚焊等不良焊接现象.b.焊点的情况.检查方法:依据检测标准目测检验或借助放大镜检验。三、检验标准的准则 印刷检验总则:印刷在焊盘上的焊膏量允许有一定的偏差,但焊膏覆盖在每个焊盘上的面积应大于焊盘面积的75%。点胶检验理想胶点:烛=焊盘和引出端面上看不到贴片胶沾染的痕迹,胶点位于各个焊盘中间,其大小为点胶嘴的1.5倍左右,胶量以贴装后元件焊端与PCB的焊盘不占污为宜。l 炉前检验炉后检验良好的焊点应是焊点饱满、润湿良好,焊料铺展到焊盘边缘。四、质量缺陷数的统计在SMT生产过程中,质量缺陷的统计十分必要,在回流焊接的质量缺陷统计中,我们引入了—DPM统计方法,即百万分率的缺陷统计方法。计算公式如下:缺陷率[DPM]=缺陷总数/焊点总数*106焊点总数=检测线路板数×焊点缺陷总数=检测线路板的全部缺陷数量例如某线路板上共有1000个焊点,检测线路板数为500,检测出的缺陷总数为20,则依据上述公式可算出:缺陷率[PPM]=20/(1000*50)*106=40PPM五、返修当完成PCBA的检查后,发现有缺陷的PCBA就需求进行维修,公司有返修SMT的PCBA有两种方法。一是采用恒温烙铁(手工焊接)进行返修,一是采用返修工作台(热风焊接)进行返修。不论采用那种方式都要求在最短的时间内形成良好的焊接点。因此当采用烙铁时要求在少于5秒的时间内完成焊接点,最好是大约3秒钟。铬铁返修法即手工焊接烙铁在使用前的处理:新烙铁在使用前先给烙铁头镀上一层焊锡后才能正常使用,当烙铁使用一段时间后,烙铁头的刃面及周围就产生一层氧化层,这样便产生“吃锡”困难的现象,此时可锉去氧化层,重新镀上焊锡。电烙铁的握法:a. 反握法:是用五指把电烙铁的柄握在掌中。此法适用于大功率电烙铁,焊接散热量较大的被焊件。b. 正握法:就是除大拇指外四指握住电烙铁柄,大拇指顺着电烙铁方向压紧,此法使用的电烙铁也比较大,且多为弯型烙铁头。握笔法:握电烙铁如握钢笔,适用于小功率电烙铁,焊接小的被焊件。本公司采用握笔法。焊接步骤:焊接过程中,工具要放整齐,电烙铁要拿稳对准。一般接点的焊接,最好使用带松香的管形焊锡丝。要一手拿电烙铁,一手拿焊锡丝。 清洁烙铁头 加温焊接点 熔化焊料 移动烙铁头 拿开电烙铁一是快速地把加热和上锡的烙铁头接触带芯锡线(cored wire),然后接触焊接点区域,用熔化的焊锡帮助从烙铁到工件的最初的热传导,然后把锡线移开将要接触焊接表面的烙铁头。一是把烙铁头接触引脚/焊盘,把锡线放在烙铁头与引脚之间,形成热桥;然后快速地把锡线移动到焊接点区域的反面。  但在产生中的通常有使用不适当温度、太大压力、延长据留时间、或者三者一起而产生对PCB或元器件的损坏现象。  焊接注意事项:1、烙铁头的温度要适当,不同温度的烙铁头放在松香块上,会产生不同的现象,一般来说,松香熔化较快又不冒烟时的温度较为适宜。2、焊接时间要适当,从加热焊接点到焊料熔化并流满焊接点,一般应在几秒钟内完成。如果焊接时间过长,则焊接点上的助焊剂完全挥发,就失去了助焊作用。 焊接时间过短则焊接点的温度达不到焊接温度达不到焊接温度,焊料不能充分 熔化,容易造成虚假焊。3、焊料与焊剂使用要适量,一般焊接点上的焊料与焊剂使用过多或过少会给焊接质量造成很大的影响。防止焊接点上的焊锡任意流动,理想的焊接应当是焊锡只焊接在需要焊接的地方。在焊接操作上,开始时焊料要少些,待焊接点达到焊接温度,焊料流入焊4、1、接点空隙后再补充焊料,迅速完成焊接。5、2、焊接过程中不要触动焊接点,在焊接点上的焊料尚未完全凝固时,不应移动焊接点上的被焊器件及导线,否则焊接点要变形,出现虚焊现象。6、3、不应烫伤周围的元器件及导线 焊接时要注意不要使电烙铁烫周围导线的塑胶绝缘层及元器件的表面,尤其是焊接结构比较紧凑、形状比较复杂的产品。7、4、及时做好焊接后的清除工作,焊接完毕后,应将剪掉的导线头及焊接时掉下的锡渣等及时清除,防止落入产品内带来隐患。 焊接后的处理: 当焊接后,需要检查:a. 是否有漏焊。b. 焊点的光泽好不好。c. 焊点的焊料足不足。d. 焊点的周围是否有残留的焊剂。e. 有无连焊。f. 焊盘有无脱落。g. 焊点有无裂纹。h. 焊点是不是凹凸不平。i. 焊点是否有拉尖现象。S. 用镊子将每个元件拉一拉,看有否松动现象。 典型焊点的外观:如下图所示:拆焊:a. 烙铁头加热被拆焊点时,焊料一熔化,就应及时按垂直线路板的方向拔出元器件的引线,不管元器件的安装位置如何,是否容易取出,都不要强拉或扭转元器件,以免损坏线路板和其它元器件。b. 拆焊时不要用力过猛,用电烙铁去撬和晃动接点的作法很不好,一般接点不允许用拉动、摇动、扭动等办法去拆除焊接点。c. 当插装新元器件之前,必须把焊盘插线孔内的焊料清除干净,否则在插装新元器件引线时,将造成线路板的焊盘翘起。 返修工作台的返修 利用返修工作台主要是对QFP、BGA、PLCC等元器件的缺陷而手工无法进行返修时采用的方法,它通常采用热风加热法对元器件焊脚进行加热,但须配合相应喷嘴。较高级的返修工作台其加温区可以做出与回流炉相似的温度曲线,如公司的SMD-1000返修工作台。关于返修工作台的操作请参巧使用说明书。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 集成电路封装清洗剂合明科技分享:半导体产品的制造全流程是怎么样的?

    集成电路封装清洗剂合明科技分享:半导体产品的制造全流程是怎么样的?

    集成电路封装清洗剂合明科技分享:半导体产品的制造全流程是怎么样的?每个半导体产品的制造都需要数百个工艺,整个制造过程分为八个步骤:晶圆加工-氧化-光刻-刻蚀-薄膜沉积-互连-测试-封装。合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。第一步晶圆加工所有半导体工艺都始于一粒沙子!因为沙子所含的硅是生产晶圆所需要的原材料。晶圆是将硅(Si)或砷化镓(GaAs)制成的单晶柱体切割形成的圆薄片。要提取高纯度的硅材料需要用到硅砂,一种二氧化硅含量高达95%的特殊材料,也是制作晶圆的主要原材料。晶圆加工就是制作获取上述晶圆的过程。① 铸锭 首先需将沙子加热,分离其中的一氧化碳和硅,并不断重复该过程直至获得超高纯度的电子级硅(EG-Si)。高纯硅熔化成液体,进而再凝固成单晶固体形式,称为“锭”,这就是半导体制造的第一步。硅锭(硅柱)的制作精度要求很高,达到纳米级,其广泛应用的制造方法是提拉法。② 锭切割前一个步骤完成后,需要用金刚石锯切掉铸锭的两端,再将其切割成一定厚度的薄片。锭薄片直径决定了晶圆的尺寸,更大更薄的晶圆能被分割成更多的可用单元,有助于降低生产成本。切割硅锭后需在薄片上加入“平坦区”或“凹痕”标记,方便在后续步骤中以其为标准设置加工方向。③ 晶圆表面抛光通过上述切割过程获得的薄片被称为“裸片”,即未经加工的“原料晶圆”。裸片的表面凹凸不平,无法直接在上面印制电路图形。因此,需要先通过研磨和化学刻蚀工艺去除表面瑕疵,然后通过抛光形成光洁的表面,再通过清洗去除残留污染物,即可获得表面整洁的成品晶圆。第二步氧化过程的作用是在晶圆表面形成保护膜。它可以保护晶圆不受化学杂质影响、避免漏电流进入电路、预防离子植入过程中的扩散以及防止晶圆在刻蚀时滑脱。氧化过程的第一步是去除杂质和污染物,需要通过四步去除有机物、金属等杂质及蒸发残留的水分。清洁完成后就可以将晶圆置于800至1200摄氏度的高温环境下,通过氧气或蒸气在晶圆表面的流动形成二氧化硅(即“氧化物”)层。氧气扩散通过氧化层与硅反应形成不同厚度的氧化层,可以在氧化完成后测量它的厚度。干法氧化和湿法氧化根据氧化反应中氧化剂的不同,热氧化过程可分为干法氧化和湿法氧化,前者使用纯氧产生二氧化硅层,速度慢但氧化层薄而致密,后者需同时使用氧气和高溶解度的水蒸气,其特点是生长速度快但保护层相对较厚且密度较低。除氧化剂以外,还有其他变量会影响到二氧化硅层的厚度。首先,晶圆结构及其表面缺陷和内部掺杂浓度都会影响氧化层的生成速率。此外,氧化设备产生的压力和温度越高,氧化层的生成就越快。在氧化过程,还需要根据单元中晶圆的位置而使用假片,以保护晶圆并减小氧化度的差异。第三步光刻光刻是通过光线将电路图案“印刷”到晶圆上,我们可以将其理解为在晶圆表面绘制半导体制造所需的平面图。电路图案的精细度越高,成品芯片的集成度就越高,必须通过先进的光刻技术才能实现。具体来说,光刻可分为涂覆光刻胶、曝光和显影三个步骤。① 涂覆光刻胶在晶圆上绘制电路的第一步是在氧化层上涂覆光刻胶。光刻胶通过改变化学性质的方式让晶圆成为“相纸”。晶圆表面的光刻胶层越薄,涂覆越均匀,可以印刷的图形就越精细。这个步骤可以采用“旋涂”方法。根据光(紫外线)反应性的区别,光刻胶可分为两种:正胶和负胶,前者在受光后会分解并消失,从而留下未受光区域的图形,而后者在受光后会聚合并让受光部分的图形显现出来。② 曝光在晶圆上覆盖光刻胶薄膜后,就可以通过控制光线照射来完成电路印刷,这个过程被称为“曝光”。我们可以通过曝光设备来选择性地通过光线,当光线穿过包含电路图案的掩膜时,就能将电路印制到下方涂有光刻胶薄膜的晶圆上。在曝光过程中,印刷图案越精细,最终的芯片就能够容纳更多元件,这有助于提高生产效率并降低单个元件的成本。在这个领域,目前备受瞩目的新技术是EUV光刻。③ 显影曝光之后的步骤是在晶圆上喷涂显影剂,目的是去除图形未覆盖区域的光刻胶,从而让印刷好的电路图案显现出来。显影完成后需要通过各种测量设备和光学显微镜进行检查,确保电路图绘制的质量。第四步 · 刻蚀在晶圆上完成电路图的光刻后,就要用刻蚀工艺来去除任何多余的氧化膜且只留下半导体电路图。要做到这一点需要利用液体、气体或等离子体来去除选定的多余部分。刻蚀的方法主要分为两种,取决于所使用的物质:使用特定的化学溶液进行化学反应来去除氧化膜的湿法刻蚀,以及使用气体或等离子体的干法刻蚀。湿法刻蚀使用化学溶液去除氧化膜的湿法刻蚀具有成本低、刻蚀速度快和生产率高的优势。然而,湿法刻蚀具有各向同性的特点,即其速度在任何方向上都是相同的。这会导致掩膜(或敏感膜)与刻蚀后的氧化膜不能完全对齐,因此很难处理非常精细的电路图。干法刻蚀干法刻蚀可分为三种不同类型。第一种为化学刻蚀,其使用的是刻蚀气体(主要是氟化氢)。和湿法刻蚀一样,这种方法也是各向同性的,这意味着它也不适合用于精细的刻蚀。第二种方法是物理溅射,即用等离子体中的离子来撞击并去除多余的氧化层。作为一种各向异性的刻蚀方法,溅射刻蚀在水平和垂直方向的刻蚀速度是不同的,因此它的精细度也要超过化学刻蚀。但这种方法的缺点是刻蚀速度较慢,因为它完全依赖于离子碰撞引起的物理反应。最后的第三种方法就是反应离子刻蚀(RIE)。RIE结合了前两种方法,即在利用等离子体进行电离物理刻蚀的同时,借助等离子体活化后产生的自由基进行化学刻蚀。除了刻蚀速度超过前两种方法以外,RIE可以利用离子各向异性的特性,实现高精细度图案的刻蚀。如今干法刻蚀已经被广泛使用,以提高精细半导体电路的良率。保持全晶圆刻蚀的均匀性并提高刻蚀速度至关重要,当今最先进的干法刻蚀设备正在以更高的性能,支持最为先进的逻辑和存储芯片的生产。第五步 · 薄膜沉积为了创建芯片内部的微型器件,我们需要不断地沉积一层层的薄膜并通过刻蚀去除掉其中多余的部分,另外还要添加一些材料将不同的器件分离开来。每个晶体管或存储单元就是通过上述过程一步步构建起来的。我们这里所说的“薄膜”是指厚度小于1微米(μm,百万分之一米)、无法通过普通机械加工方法制造出来的“膜”。将包含所需分子或原子单元的薄膜放到晶圆上的过程就是“沉积”。要形成多层的半导体结构,我们需要先制造器件叠层,即在晶圆表面交替堆叠多层薄金属(导电)膜和介电(绝缘)膜,之后再通过重复刻蚀工艺去除多余部分并形成三维结构。可用于沉积过程的技术包括化学气相沉积 (CVD)、原子层沉积 (ALD) 和物理气相沉积 (PVD),采用这些技术的方法又可以分为干法和湿法沉积两种。01化学气相沉积在化学气相沉积中,前驱气体会在反应腔发生化学反应并生成附着在晶圆表面的薄膜以及被抽出腔室的副产物。等离子体增强化学气相沉积则需要借助等离子体产生反应气体。这种方法降低了反应温度,因此非常适合对温度敏感的结构。使用等离子体还可以减少沉积次数,往往可以带来更高质量的薄膜。02原子层沉积原子层沉积通过每次只沉积几个原子层从而形成薄膜。该方法的关键在于循环按一定顺序进行的独立步骤并保持良好的控制。在晶圆表面涂覆前驱体是第一步,之后引入不同的气体与前驱体反应即可在晶圆表面形成所需的物质。03物理气相沉积顾名思义,物理气相沉积是指通过物理手段形成薄膜。溅射就是一种物理气相沉积方法,其原理是通过氩等离子体的轰击让靶材的原子溅射出来并沉积在晶圆表面形成薄膜。在某些情况下,可以通过紫外线热处理 (UVTP) 等技术对沉积膜进行处理并改善其性能。第六步 · 互连半导体的导电性处于导体与非导体(即绝缘体)之间,这种特性使我们能完全掌控电流。通过基于晶圆的光刻、刻蚀和沉积工艺可以构建出晶体管等元件,但还需要将它们连接起来才能实现电力与信号的发送与接收。金属因其具有导电性而被用于电路互连。用于半导体的金属需要满足以下条件:低电阻率:由于金属电路需要传递电流,因此其中的金属应具有较低的电阻。热化学稳定性:金属互连过程中金属材料的属性必须保持不变。高可靠性:随着集成电路技术的发展,即便是少量金属互连材料也必须具备足够的耐用性。制造成本:即使已经满足前面三个条件,材料成本过高的话也无法满足批量生产的需要。互连工艺主要使用铝和铜这两种物质。铝互连工艺铝互连工艺始于铝沉积、光刻胶应用以及曝光与显影,随后通过刻蚀有选择地去除任何多余的铝和光刻胶,然后才能进入氧化过程。前述步骤完成后再不断重复光刻、刻蚀和沉积过程直至完成互连。除了具有出色的导电性,铝还具有容易光刻、刻蚀和沉积的特点。此外,它的成本较低,与氧化膜粘附的效果也比较好。其缺点是容易腐蚀且熔点较低。另外,为防止铝与硅反应导致连接问题,还需要添加金属沉积物将铝与晶圆隔开,这种沉积物被称为“阻挡金属”。铝电路是通过沉积形成的。晶圆进入真空腔后,铝颗粒形成的薄膜会附着在晶圆上。这一过程被称为“气相沉积 (VD) ”,包括化学气相沉积和物理气相沉积。铜互连工艺随着半导体工艺精密度的提升以及器件尺寸的缩小,铝电路的连接速度和电气特性逐渐无法满足要求,为此我们需要寻找满足尺寸和成本两方面要求的新导体。铜之所以能取代铝的第一个原因就是其电阻更低,因此能实现更快的器件连接速度。其次铜的可靠性更高,因为它比铝更能抵抗电迁移,也就是电流流过金属时发生的金属离子运动。但是,铜不容易形成化合物,因此很难将其气化并从晶圆表面去除。针对这个问题,我们不再去刻蚀铜,而是沉积和刻蚀介电材料,这样就可以在需要的地方形成由沟道和通路孔组成的金属线路图形,之后再将铜填入前述“图形”即可实现互连,而最后的填入过程被称为“镶嵌工艺”。随着铜原子不断扩散至电介质,后者的绝缘性会降低并产生阻挡铜原子继续扩散的阻挡层。之后阻挡层上会形成很薄的铜种子层。到这一步之后就可以进行电镀,也就是用铜填充高深宽比的图形。填充后多余的铜可以用金属化学机械抛光 (CMP) 方法去除,完成后即可沉积氧化膜,多余的膜则用光刻和刻蚀工艺去除即可。前述整个过程需要不断重复直至完成铜互连为止。通过上述对比可以看出,铜互连和铝互连的区别在于,多余的铜是通过金属CMP而非刻蚀去除的。第七步 · 测试测试的主要目标是检验半导体芯片的质量是否达到一定标准,从而消除不良产品、并提高芯片的可靠性。另外,经测试有缺陷的产品不会进入封装步骤,有助于节省成本和时间。电子管芯分选 (EDS) 就是一种针对晶圆的测试方法。EDS是一种检验晶圆状态中各芯片的电气特性并由此提升半导体良率的工艺。EDS可分为五步,具体如下 :01电气参数监控 (EPM)EPM是半导体芯片测试的第一步。该步骤将对半导体集成电路需要用到的每个器件(包括晶体管、电容器和二极管)进行测试,确保其电气参数达标。EPM的主要作用是提供测得的电气特性数据,这些数据将被用于提高半导体制造工艺的效率和产品性能(并非检测不良产品)。02晶圆老化测试半导体不良率来自两个方面,即制造缺陷的比率(早期较高)和之后整个生命周期发生缺陷的比率。晶圆老化测试是指将晶圆置于一定的温度和AC/DC电压下进行测试,由此找出其中可能在早期发生缺陷的产品,也就是说通过发现潜在缺陷来提升最终产品的可靠性。03检测老化测试完成后就需要用探针卡将半导体芯片连接到测试装置,之后就可以对晶圆进行温度、速度和运动测试以检验相关半导体功能。具体测试步骤的说明请见表格。04修补修补是最重要的测试步骤,因为某些不良芯片是可以修复的,只需替换掉其中存在问题的元件即可。05点墨未能通过电气测试的芯片已经在之前几个步骤中被分拣出来,但还需要加上标记才能区分它们。过去我们需要用特殊墨水标记有缺陷的芯片,保证它们用肉眼即可识别,如今则是由系统根据测试数据值自动进行分拣。第八步 · 封装经过之前几个工艺处理的晶圆上会形成大小相等的方形芯片(又称“单个晶片”)。下面要做的就是通过切割获得单独的芯片。刚切割下来的芯片很脆弱且不能交换电信号,需要单独进行处理。这一处理过程就是封装,包括在半导体芯片外部形成保护壳和让它们能够与外部交换电信号。整个封装制程分为五步,即晶圆锯切、单个晶片附着、互连、成型和封装测试。01晶圆锯切要想从晶圆上切出无数致密排列的芯片,我们首先要仔细“研磨”晶圆的背面直至其厚度能够满足封装工艺的需要。研磨后,我们就可以沿着晶圆上的划片线进行切割,直至将半导体芯片分离出来。晶圆锯切技术有三种:刀片切割、激光切割和等离子切割。刀片切割是指用金刚石刀片切割晶圆,这种方法容易产生摩擦热和碎屑并因此损坏晶圆。激光切割的精度更高,能轻松处理厚度较薄或划片线间距很小的晶圆。等离子切割采用等离子刻蚀的原理,因此即使划片线间距非常小,这种技术同样能适用。02单个晶片附着所有芯片都从晶圆上分离后,我们需要将单独的芯片(单个晶片)附着到基底(引线框架)上。基底的作用是保护半导体芯片并让它们能与外部电路进行电信号交换。附着芯片时可以使用液体或固体带状粘合剂。03互连在将芯片附着到基底上之后,我们还需要连接二者的接触点才能实现电信号交换。这一步可以使用的连接方法有两种:使用细金属线的引线键合和使用球形金块或锡块的倒装芯片键合。引线键合属于传统方法,倒装芯片键合技术可以加快半导体制造的速度。04成型完成半导体芯片的连接后,需要利用成型工艺给芯片外部加一个包装,以保护半导体集成电路不受温度和湿度等外部条件影响。根据需要制成封装模具后,我们要将半导体芯片和环氧模塑料 (EMC) 都放入模具中并进行密封。密封之后的芯片就是最终形态了。05封装测试已经具有最终形态的芯片还要通过最后的缺陷测试。进入最终测试的全部是成品的半导体芯片。它们将被放入测试设备,设定不同的条件例如电压、温度和湿度等进行电气、功能和速度测试。这些测试的结果可以用来发现缺陷、提高产品质量和生产效率。封装技术的演变随着芯片体积的减少和性能要求的提升,封装在过去数年间已经历了多次技术革新。面向未来的一些封装技术和方案包括将沉积用于传统后道工艺,例如晶圆级封装(WLP)、凸块工艺和重布线层 (RDL) 技术,以及用于前道晶圆制造的的刻蚀和清洁技术。—End—本文转载自“泛林半导体设备技术”,仅供交流学习之用针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • SMT生产中贴片胶、锡膏、钢网等辅助材料介绍-钢网清洗剂合明科技分享

    SMT生产中贴片胶、锡膏、钢网等辅助材料介绍-钢网清洗剂合明科技分享

    SMT生产中贴片胶、锡膏、钢网 等辅助材料介绍-合明科技合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。在SMT生产中,通常我们贴片胶、锡膏、钢网称之为SMT辅助材料。这些辅助材料在SMT整个过程中,对SMT的品质、生产效率起着致关重要的作用。因此,作为SMT工作人员必须了解它们的某些性能和学会正确使用它们。 一、常用术语 贮存期(shelflife)在规定条件下,材料或产品仍能满足技术要求并保持适当使作性能的存放时间。2.1. 放置时间(workingtime)贴片胶、焊膏在使用前暴露于规定环境中仍能保持规定化学、物理性能的最长时间。3.2. 粘度(viscosity)贴片胶、焊膏在自然滴落时的滴延性的胶粘性质。4.3. 触变性(thixotropicratio)贴片胶与锡膏在施压挤出时具有流体的特性与挤出后迅速恢复为具有固塑性的特性。5.4. 塌落(slump)焊膏印刷后在重力和表面张力的作用及温度升高或停放时间过长等原因而引起的高度降低、底面积超出规定边界的坍流现象。6.5. 扩散(spread)贴片胶在点胶后在室温条件下展开的距离。7.6. 粘附性(tack)焊膏对元器件粘附力的大小及其随焊膏印刷后存放时间变化其粘附力所发生的变化8.7. 润湿(wetting)熔融的焊料在铜表面形成均匀、平滑和不断裂的焊料薄层的状态。9.8. 免清洗焊膏(no-cleansolder paste)焊后只含微量无害焊剂残留物而无需清洗PCB的焊膏10.9. 低温焊膏(lowtemperature paste)熔化温度比183℃低20℃以上的焊膏。二、贴片胶(红胶)SMT中使用的贴片胶其作用是固定片式元件、SOT、SOIC等表面安装器件在PCB上,以使其在插件、过波峰焊过程避免元器件的脱落或移位。贴片胶可分为两大类型:环氧树脂类型和丙稀酸类型。一般生产中采用环氧树脂热固化类胶水(如乐泰3609红胶),其特点是:热固化速度快接连强度高电特性较佳而不采用丙稀酸胶水(需紫外线照射固化)。SMT对贴片胶水的基本要求:包装内无杂质及气泡贮存期限长可用于高速/或超高速点胶机胶点形状及体积一致点断面高,无拉丝颜色易识别,便于人工及自动化机器检查胶点的质量初粘力高高速固化,胶水的固化温度低,固化时间短热固化时,胶点不会下塌高强度及弹性以抵挡波峰焊时之温度突变固化后有优良的电特性无毒性具有良好的返修特性贴片胶引起的生产品质问题失件(有、无贴片胶痕迹)元件偏斜接触不良(拉丝、太多贴片胶)贴片胶使用规范:贮存胶水领取后应登记到达时间、失效期、型号,并为每瓶胶水编号。然后把胶水保存在恒温、恒湿的冰箱内,温度在(1—10)℃。取用胶水使用时,应做到先进先出的原则,应提前至少1小时从冰箱中取出,写下时间、编号、使用者、应用的产品,并密封置于室温下,待胶水达到室温时按一天的使用量把胶水用注胶枪分别注入点胶瓶里。注胶水时,应小心和缓慢地注入点胶瓶,防止空气泡的产生。使用把装好胶水的点胶瓶重新放入冰箱,生产时提前0.5~2.0小时从冰箱取出,标明取出时间、日期、瓶号,填写胶水(锡膏)解冻、使用时间记录表,使用完的胶水瓶用酒精或丙酮清洗干净放好以备下次使用,未使用完的胶水,标明时间放入冰箱存放。二、锡膏由焊膏产生的缺陷占SMT中缺陷的60%—70%,所以规范合理使用焊膏显得尤为重要。在表面组装件的回流焊中,焊膏被用来实施表面组装元器件的引线或端点与印制板上焊盘的连接。焊膏是由合金焊料粉、焊剂和一些添加剂混合而成的,具有一定粘性和良好触变性的一种均质混合物,具有良好的印刷性能和再流焊性能,并在贮存时具有稳定性的膏状体。合金焊料粉是焊膏的主要成分,约占焊膏重量的85%—90%。常用的合金焊料粉有以下几种:锡 – 铅(Sn – Pb)、锡 – 铅 – 银(Sn – Pb –Ag)、锡 – 铅 – 铋(Sn – Pb – Bi)等,最常用的合金成分为Sn63Pb3。合金焊料粉的形状可分为球形和椭圆形(无定形),其形状、粒度大小影响表面氧化度和流动性,因此,对焊膏的性能影响很大。一般,由印刷钢板或网版的开口尺寸或注射器的口径来决定选择焊锡粉颗粒的大小和形状。不同的焊盘尺寸和元器件引脚应选用不同颗粒度的焊料粉,不能都选用小颗粒,因为小颗粒有大得多的表面积,使得焊剂在处理表面氧化时负担加重。在焊膏中,焊剂是合金焊料粉的载体,其主要的作用是清除被焊件以及合金焊料粉的表面氧化物,使焊料迅速扩散并附着在被焊金属表面。焊剂的组成为:活性剂、成膜剂和胶粘剂、润湿剂、触变剂、溶剂和增稠剂以及其他各类添加剂。焊剂的活性:对焊剂的活性必须控制,活性剂量太少可能因活性差而影响焊接效果,但活性剂量太多又会引起残留量的增加,甚至使腐蚀性增强,特别是对焊剂中的卤素含量更需严格控制,其实,根据性能要求,焊剂的重量比还可扩大至8%—20%。焊膏中的焊剂的组成及含量对塌落度、粘度和触变性等影响很大。金属含量较高(大于90%)时,可以改善焊膏的塌落度,有利于形成饱满的焊点,并且由于焊剂量相对较少可减少焊剂残留物,有效防止焊球的出现,缺点是对印刷和焊接工艺要求较严格;金属含量较低(小于85%)时,印刷性好,焊膏不易粘刮刀,漏版寿命长,润湿性好,此外加工较易,缺点是易塌落,易出现焊球和桥接等缺陷。焊膏的分类可以按以下几种方法:按熔点的高低分:高温焊膏为熔点大于250℃,低温焊膏熔点小于150℃,常用的焊膏熔点为179℃—183℃,成分为Sn63Pb37和Sn62Pb36Ag2。按焊剂的活性分:可分为无活性(R),中等活性(RMA)和活性(RA)焊膏。常用的为中等活性焊膏。SMT对焊膏有以下要求:1、具有较长的贮存寿命,在0—10℃下保存3 — 6个月。贮存时不会发生化学变化,也不会出现焊料粉和焊剂分离的现象,并保持其粘度和粘接性不变。2、有较长的工作寿命,在印刷或滴涂后通常要求能在常温下放置12—24小时,其性能保持不变。3、在印刷或涂布后以及在再流焊预热过程中,焊膏应保持原来的形状和大小,不产生堵塞。4、良好的润湿性能。要正确选用焊剂中活性剂和润湿剂成分,以便达到润湿性能要求。5、不发生焊料飞溅。这主要取决于焊膏的吸水性、焊膏中溶剂的类型、沸点和用量以及焊料粉中杂质类型和含量。6、具有较好的焊接强度,确保不会因振动等因素出现元器件脱落。7、焊后残留物稳定性能好,无腐蚀,有较高的绝缘电阻,且清洗性好。焊膏的选用主要根据工艺条件,使用要求及焊膏的性能:1、具有优异的保存稳定性。2、具有良好的印刷性(流动性、脱版性、连续印刷性)等。3、印刷后在长时间内对SMD持有一定的粘合性。4、焊接后能得到良好的接合状态(焊点)。5、其焊接成分,具高绝缘性,低腐蚀性。6、对焊接后的焊剂残渣有良好的清洗性,清洗后不可留有残渣成分。 焊膏使用和贮存的注意事顶1、领取焊膏应登记到达时间、失效期、型号,并为每罐焊膏编号。然后保存在恒温、恒湿的冰箱内,温度在约为(2—10)℃。锡膏储存和处理推荐方法的常见数据见表:条件时间环境装运4 天< 10°C货架寿命(冷藏)3 ~ 6 个月(标贴上标明)0 ~ 5°C 冰箱货架寿命(室温)5 天湿度:30~60%RH 温度:15~25°C锡膏稳定时间 (从冰箱取出后)8 小时室温 湿度:30~60%RH 温度:15~25°C锡膏模板寿命4 小时机器环境 湿度:30~60%RH 温度:15~25°C 2、焊膏使用时,应做到先进先出的原则,应提前至少2小时从冰箱中取出,写下时间、编号、使用者、应用的产品,并密封置于室温下,待焊膏达到室温时打开瓶盖。如果在低温下打开,容易吸收水汽,再流焊时容易产行锡珠。注意:不能把焊膏置于热风器、空调等旁边加速它的升温。3、焊膏开封前,须使用离心式的搅伴机进行搅拌,使焊膏中的各成分均匀,降低焊膏的粘度。焊膏开封后,原则上应在当天内一次用完,超过时间使用期的焊膏绝对不能使用4、焊膏置于网板上超过30分钟未使用时,应重新用搅拌机搅拌后再使用。若中间间隔时间较长,应将焊膏重新放回罐中并盖紧瓶盖放于冰箱中冷藏。5、根据印制板的幅面及焊点的多少,决定第一次加到网板上的焊膏量,一般第一次加200—300克,印刷一段时间后再适当加入一点。6、焊膏印刷后应在24小时内贴装完,超过时间应把PCB焊膏清洗后重新印刷。7、焊膏印刷时间的最佳温度为23℃±3℃,温度以相对湿度55±5%为宜。湿度过高,焊膏容易吸收水汽,在再流焊时产生锡珠。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 电子元器件电容助焊剂清洗剂合明科技分享:SMT知识培训手册之元器件知识

    电子元器件电容助焊剂清洗剂合明科技分享:SMT知识培训手册之元器件知识

    电子元器件电容助焊剂清洗剂合明科技分享:SMT知识培训手册之 元器件知识合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。SMT无器件名词解释1、小外形晶体管 (SOT) (small outline transister)采用小外形封装结构的表面组装晶体管。2、小外形二极管 (SOD) (small outline diode)采用小外形封装结构的表面组装二极管。3、片状元件(chip)(rectangular chip component)两端无引线,有焊接端,外形为薄片矩形的表面组装元件。4、小外形封装(SOP) (small outline package )小外形模压着塑料封装,元件两侧有翼形状或J形状短引线的一种表面组装元器件封装形式。5、四边扁平封装(QFP)(quad flat package)四边具有翼形状短引线,引线间距为1.00,0.80,0.65,0.50,0.40,0.30mm等的塑料封装薄形表面组装集成电路。6、细间距(fine pitch)不大于0.5mm的引脚间距7、引脚共面性(lead coplanarity )指表面组装元器件引脚垂直高度偏差,即引脚的最高脚底与最低三条引脚的脚底形成的平面之间的垂直距离。8、封装(packages) SMT元器件种类在SMT生产过程中,员工们会接上百种以上的元器件, 了解这些元器件对我们在工作时不出错或少出错非常有用。现在,随着SMT技术的普及,各种电子元器件几乎都有了SMT的封装。而公司目前使用最多的电子元器件为电阻(R-resistor)、电容(C-capacitor)(电容又包括陶瓷电容—C/C ,钽电容—T/C,电解电容—E/C)、二极管(D-diode)、稳压二极管(ZD)、三极管(Q-transistor)、压敏电阻(VR)、电感线圈(L)、变压器(T)、送话器(MIC)、受话器(RX)、集成电路(IC)、喇叭(SPK)、晶体振荡器(XL)等,而在SMT中我们可以把它分成如下种类:电阻—RESISTOR 电容—CAPACITOR 二极管—DIODE 三极管—TRANSISTOR排插—CONNECTOR 电感—COIL 集成块—IC 按钮—SWITCH 等。(一) 电阻1.单位:1Ω=1×10-3 KΩ=1×10-6MΩ2.规格:以元件的长和宽来定义的。有1005(0402)、1608(0603)、2012(0805) 3216(1206)等。3.表示的方法:2R2=2.2Ω 1K5=1.5KΩ 2M5=2.5MΩ 103J=10×103Ω=10KΩ1002F=100×102Ω=10KΩ (F、J指误差, F指±1%精密电阻,J为±5%的普通电阻,F 的性能比J的性能好)。电阻上面除1005外都标有数字,这数字代表电阻的容量。(二) 电容:包括陶瓷电容—C/C 、钽电容—T/C、电解电容—E/C1.单位:1PF=1×10-3 NF =1×10-6UF =1×10-9MF =1×10-12F 2.规格:以元件的长和宽来定义的,有1005(0402)、1608(0603)、2012(0805) 3216(1206)等。4.表式方法: 103K=10×103PF=10NF 104Z=10×104PF=100NF 0R5=0.5PF 注意:电解电容和钽电容是有方向的,白色表示“+”极。(一) 二极管:有整流二极管、稳压二极管、发光二极管。二极管是有方向的,其正负极可以用 万用表来测试。(二) 集成块:(IC)分为SOP、SOJ、QFP、PLCC(三) 电感:单位:1H=103MH=106UH=109NH表示形式:R68J=680NH 068J=68NH 101J=100UH 1R0=1UH 150K=15UHJ 、K指误差,其精度值同电容。四.资材的包装形式:1.TAPE形:包括PAPER、EMBOSSED、ADHESIVE。根据TAPE的宽度分为8mm、12mm、16mm、24mm、32mm、44mm、56mm等。TAPE上两个元件之间的距离称为PITCH,有4 mm、8 mm、12 mm、16 mm、20 mm等2.STICK形3.TRAY形片式元件:主要是电阻、电容。晶体元件:主要有二极管、三极管、IC。 以上SMT元器件均是规则的元器件,可以给它们更详细的分述:3.1. 连接件(Interconnect):提供机械与电气连接/断开,由连接插头和插座组成,将电缆、支架、机箱或其它PCB与PCB连接起来;可是与板的实际连接必须是通过表面贴装型接触。4.2. 异型电子元件(Odd-form):指几何形状不规节的元器件。因此必须用手工贴装,其外壳(与其基本功能成对比)形状是不标准的,例如:许多变压器、混合电路结构、风扇、机械开关块,等。SMT元器件在生产中常用知识电阻值、电容值的单位电阻值的单位通常为:欧姆(Ω),此外还使用:千欧姆(KΩ)、兆欧姆(MΩ),它们之间的关系如下:1MΩ = 103KΩ = 106Ω电容值的单位通常为:法拉(F),另外还常使用:毫法(mF)、微法(uF)、纳法(NF)、皮法(PF),它们之间的关系如下:1F = 103Mf = 106uF = 109NF= 1012PF元件的标准误差代码表符号误差应用范围符号误差应用范围A10PF或以下M±20%B±0.10PF NC±0.25PFOD±0.5PFP+100%,-0EQF±1.0%RG±2.0%S+50%,-20%HTIUJ±5%VK±10%XLYZ+80%,-20%W片式电阻的标识在片式电阻的本体上,通常都标有一些数值,它们代表电阻器的电阻值。其表示方法如下:标印值电阻值标印值电阻值2R22.2Ω2222200Ω22022Ω22322000Ω221220Ω224220000Ω片式电阻的包装标识常见类型:1) RR 1206 8/1 561 J 种类 尺寸 功耗 标称阻值 允许偏差 2) ERD 10 TL J 561 U 种类 额定功耗 形状 允许偏差 标称阻值 包装形式 在SMT生产过程中,我们须要注意的是电阻阻值、偏差、额定功耗这三个值。 片式电容的标识在普通的多层陶瓷电容本体上一般是没有标识的,在生产时应尽量避免使用已混装的该类元器件。而在钽电容本体上一般均有标识,其标识如下:标印值电容值标印值电容值0R20.2PF221220PF0202PF2222200PF22022PF22322000PF片式电容器的包装标识常见类型:1)AVX/京都陶瓷公司0603 5 A 101 K A T 2 A 尺寸 电压 介质 标称电容 允许误差 失效率 端头 包装 专用代码电压:Y=16V,1=100V,2=200V,3=25V,5=50V,7=500V,C=600V,A=1000V介质:A=NPO,C=X7R,E=Z5U,G=Y5V包装:1=178mm卷盘胶带,2=178mm卷盘纸带,3=178mm卷盘胶带,4=178mm卷盘胶带专用代码:A=标准产品,T=0.66mm,S=0.56mm,R=0.46mm,P=0.38mm2)诺瓦(Novacap)公司0603 N 102 J 500 N X T M 尺寸 介质 电容值 允许偏差 电压 端头 厚度 包装 标志介质:N=COG(NPO),X=Z5U,B=X7R电压:与容量的表示方法相同包装:B=散装,T=盘式,W=方形包装3)三星(SAMAUNG)公司CL 21 B 102 K B N C 电容器 尺寸 温度特性 电容值 允许误差 电压 厚度 包装尺寸: 03=0201,05=0402,10=0603,21=0805,31=1206,32=1210温度特性:C=COG,B=X7R,E=Z5U,F=Y5V,S=S2H,T=T2H,U=U2J电压:Q=6.3V,P=10V,O=16V,A=25V,B=50V,C=100V厚度:N=标准厚度,A=比N薄,B=比N厚包装:B=散装,C=纸带包装,E=胶带包装,P=合装4)TDK公司C 1005 CH 1H 100 D T 名称 尺寸 温度特性 电压 电容值 允许误差 包装温度特性:COG,X7R,X5R,Y5V电压:0J=6.3V,1A=10V,1C=16V,1E=25V,1H=50V,2A=100V,2E=250V,2J=630V包装:T=Taping,B=Bulk5)广东风华公司CC41 0805 N 102 K 500 P T 电容器 尺寸 介质 标称容量 允许误差 电压 端头 包装介质:N=NPO,CG=COG,B=X7R,Y=Y5V电压:250=25V,500=50V,101=100V 钽电容器的包装标识常见类型:1)三星(SAMSUNG)公司TC SCN 1C 105 M A A R 钽电容 型号 电压 电容值 误差 尺寸 包装 极性方向型号:SCN与SCS系列电压:0G=4V,0J=6.3V,1A=10V,1C=16V,1D=20V,1E=25V,1V=35V尺寸:A=3216,B=3528,C=6032,D=7343包装:A=7”,C=13”包装:R=右,L=左电感器电感值的单位为:享(H),微享(uH)、纳享(nH),它们的关系如下:1H = 106uH= 109nH其容量值的表示法如下:代码表示值代码表示值3N33.3nHR100.1uH或100nH10N10nHR220.22uH或220nH33033uH5R65.6uH或5600nH1)三星(SAMSUNG)公司CI H 10 T 3N3 S N C 电感 系列 尺寸 材料 容量 误差 厚度 包装系列:H=CIH系列,L=CIL系列尺寸:10=1608,21=2012误差:C=±0.2nH,S=±0.3nH , D=±0.5nH,G=±2%厚度:N=标准,A=比N薄,B=比N厚包装:C=纸带,E=胶带2)TDK公司NLU 160805 T - 2N2 C 系列名称 尺寸 包装 电感值 允许误差二极管公司常见的二极管是LL4148和IN4148两种,另外就是一些稳压二极管及发光二管,在使用稳压二极管时应注意其电压是否与料单相符,另外某些稳压管的外形与三极管外形(SOT)形状一致,在使用时应小心区分。而在使用发光二极管时则要留意其发出光的颜色种类。三极管在三极管里,其PN结的极性不同,其功能用途就不一样,在使用时,我们必须对三极管子的型号仔细分清楚,其型号里一个符号的差别可能就是完全相反功能的三极管。集成块(IC)IC在装贴时最容易出错的是方向不正确,另外就是在装贴EPROM时易把OPT片(没烧录程式)当作掩膜片(已烧录程式)来装贴,从而造成严重错误。因此,在生产时必须细心核对来料。其它元器件生产时留意工艺卡。元器件的包装SMT的元器件包装须适应设备的自动运转。目在SMT产业里的元器件包装主要有编带、盘式、滑道式、粘带、散式包装,其中粘带是编带中的一种。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 回流焊后PCB清洗剂合明科技分享:回流焊主要缺陷分析与典型PCB回流区间温度设定

    回流焊后PCB清洗剂合明科技分享:回流焊主要缺陷分析与典型PCB回流区间温度设定

    回流焊主要缺陷分析与典型PCB回流区间温度设定解析-回流焊后PCB清洗剂合明科技分享合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。回流焊: 固化、回流在固化、回流工艺里最主要是控制好固化、回流的温度曲线亦即是固化、回流条件,正确的温度曲线将保证高品质的焊接锡点。在回流炉里,其内部对于我们来说是一个黑箱,我们不清楚其内部发生的事情,这样为我制定工艺带来重重困难。为克服这个困难,在SMT行业里普遍采用温度测试仪得出温度曲线,再参考之进行更改工艺。温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表PCB上一个特定点上的温度形成一条曲线。几个参数影响曲线的形状,其中最关键的是传送带速度和每个区的温度设定。传送带速度决定机板暴露在每个区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该区的温度设定。每个区所花的持续时间总和决定总共的处理时间。回流焊后PCB清洗剂,回流焊锡膏清洗剂,回流后焊剂清洗剂,PCB回流后焊盘清洗剂,PCB助焊剂清洗剂每个区的温度设定影响PCB的温度上升速度,高温在PCB与区的温度之间产生一个较大的温差。增加区的设定温度允许机板更快地达到给定温度。因此,必须作出一个图形来决定PCB的温度曲线。接下来是这个步骤的轮廓,用以产生和优化图形。需要下列设备和辅助工具:温度曲线仪、热电偶、将热电偶附着于PCB的工具和锡膏参数表。测温仪器一般分为两类:实时测温仪,即时传送温度/时间数据和作出图形;而另一种测温仪采样储存数据,然后上载到计算机。将热电偶使用高温焊锡如银/锡合金,焊点尽量最小附着于PCB,或用少量的热化合物(也叫热导膏或热油脂)斑点覆盖住热电偶,再用高温胶带(如Kapton)粘住附着于PCB。附着的位置也要选择,通常最好是将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间。如图示回流焊后PCB清洗剂-锡膏的特性参数表也是必要的,其应包含所希望的温度曲线持续时间、锡膏活性温度、合金熔点和所希望的回流最高温度。理想的温度曲线理论上理想的曲线由四个部分或区间组成,前面三个区加热、最后一个区冷却。炉的温区越多,越能使温度曲线的轮廓达到更准确和接近设定。预热区,用来将PCB的温度从周围环境温度提升到所须的活性温度。其温度以不超过每秒2~5°C速度连续上升,温度升得太快会引起某些缺陷,如陶瓷电容的细微裂纹,而温度上升太慢,锡膏会感温过度,没有足够的时间使PCB达到活性温度。炉的预热区一般占整个加热通道长度的25~33%。活性区,有时叫做干燥或浸湿区,这个区一般占加热通道的33~50%,有两个功用,第一是,将PCB在相当稳定的温度下感温,使不同质量的元件具有相同温度,减少它们的相当温差。第二个功能是,允许助焊剂活性化,挥发性的物质从锡膏中挥发。一般普遍的活性温度范围是120~150°C,如果活性区的温度设定太高,助焊剂没有足够的时间活性化。因此理想的曲线要求相当平稳的温度,这样使得PCB的温度在活性区开始和结束时是相等的。回流区,其作用是将PCB装配的温度从活性温度提高到所推荐的峰值温度。典型的峰值温度范围是205~230°C,这个区的温度设定太高会引起PCB的过分卷曲、脱层或烧损,并损害元件的完整性。理想的冷却区曲线应该是和回流区曲线成镜像关系。越是靠近这种镜像关系,焊点达到固态的结构越紧密,得到焊接点的质量越高,结合完整性越好。实际温度曲线当我们按一般PCB回流温度设定后,给回流炉通电加热,当设备临测系统显示炉内温度达到稳定时,利用温度测试仪进行测试以观察其温度曲线是否与我们的预定曲线相符。否则进行各温区的温度重新设置及炉子参数调整,这些参数包括传送速度、冷却风扇速度、强制空气冲击和惰性气体流量,以达到正确的温度为止。回流焊锡膏清洗剂典型PCB回流区间温度设定区间区间温度设定区间末实际板温预热210°C140°C活性180°C150°C回流240°C210°C以下是一些不良的回流曲线类型:当最后的曲线图尽可能的与所希望的图形相吻合,应该把炉的参数记录或储存以备后用。虽然这个过程开始很慢和费力,但最终可以取得熟练和速度,结果得到高品质的PCB的高效率的生产回流后焊剂清洗剂回流焊主要缺陷分析:锡珠(Solder Balls):原因:1、丝印孔与焊盘不对位,印刷不精确,使锡膏弄脏PCB。2、锡膏在氧化环境中暴露过多、吸空气中水份太多。3、加热不精确,太慢且不均匀。4、加热速率太快且预热区间太长。5、锡膏干得太快。6、助焊剂活性不够。7、太多颗粒小的锡粉。8、回流过程中助焊剂挥发性不适当。锡球的工艺认可标准是:当焊盘或印制导线的之间距离为0.13mm时,锡珠直径不能超过0.13mm,或者在600mm平方范围内不能出现超过五个锡珠。锡桥(Bridging):一般来说,造成锡桥的因素就是由于锡膏太稀,包括 锡膏内金属或固体含量低、摇溶性低、锡膏容易炸开,锡膏颗粒太大、助焊剂表面张力太小。焊盘上太多锡膏,回流温度峰值太高等。开路(Open):原因:1、锡膏量不够。2、元件引脚的共面性不够。3、锡湿不够(不够熔化、流动性不好),锡膏太稀引起锡流失。4、引脚吸锡(象灯芯草一样)或附近有连线孔。引脚的共面性对密间距和超密间距引脚元件特别重要,一个解决方法是在焊盘上预先上锡。引脚吸锡可以通过放慢加热速度和底面加热多、上面加热少来防止。也可以用一种浸湿速度较慢、活性温度高的助焊剂或者用一种Sn/Pb不同比例的阻滞熔化的锡膏来减少引脚吸锡。7.1. 检查、包装检查是为我们客户(亦是下一工序)提供100%良好品的保障,因此我们必须对每一个PCBA进行检查。检查着重项目:PCBA的版本号是否为更改后的版本。客户有否要求元器件使用代用料或指定厂商、牌子的元器件。IC、二极管、三极管、钽电容、铝电容、开关等有方向的元器件的方向是否正确。焊接后的缺陷:短路、开路、缺件、假焊包装是为把PCBA安全地运送到客户(下一工序)的手上。要保证运输途中的PCBA的安全,我们就要有可靠的包装以进行运输。公司目前所用的包装工具有:用胶袋包装后竖状堆放于防静电胶盆把PCBA使用专用的存储架(公司定做、设备专商提供)存放客户指定的包装方式不管使用何种包装均要求对包装箱作明确的标识,该标识必须包含下元列内容:产品名称及型号产品数量生产日期检验人8、在SMT贴装过程中,难免会遇上某些元器件使用人工贴装的方法,人工贴装时我们要注意下列事项:避免将不同的元件混在一起切勿使元器件受到过度的拉力和压力转动元器件应该夹着主体,不应该夹着引脚或焊接端放置元件是应使用清洁的镊子不使用丢掉或标识不明的元器件使用清洁的元器件小心处理可编程装置,避免导线损坏针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 锡膏丝印板锡膏清洗液合明科技分享:SMT知识培训手册-锡膏印刷的丝印品质关键因素有哪些?

    锡膏丝印板锡膏清洗液合明科技分享:SMT知识培训手册-锡膏印刷的丝印品质关键因素有哪些?

    SMT知识培训手册-锡膏印刷的丝印品质关键因素有哪些?合明科技锡膏印刷板清洗剂、SMT锡膏网板清洗设备合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。在锡膏丝印中有三个关键的要素,我们叫做3S:Solder paste(锡膏),Stencils (模板),和Squeegees(丝印刮板)。三个要素的正确结合是持续的丝印品质的关键所在。SMT锡膏网板清洗设备-刮板(squeegee)刮板作用,在印刷时,使刮板将锡膏在前面滚动,使其流入模板孔内, 然后刮去多余锡膏, 在PCB焊盘上留下与模板一样厚的锡膏。常见有两种刮板类型:橡胶或聚氨酯(polyurethane)刮板和金属刮板。金属刮板由不锈钢或黄铜制成,具有平的刀片形状,使用的印刷角度为30~55°。使用较高的压力时,它不会从开孔中挖出锡膏,还因为是金属的,它们不象橡胶刮板那样容易磨损,因此不需要锋利。它们比橡胶刮板成本贵得多,并可能引起模板磨损。橡胶刮板,使用70-90橡胶硬度计(durometer)硬度的刮板。当使用过高的压力时,渗入到模板底部的锡膏可能造成锡桥,要求频繁的底部抹擦。甚至可能损坏刮板和模板或丝网。过高的压力也倾向于从宽的开孔中挖出锡膏,引起焊锡圆角不够。刮板压力低造成遗漏和粗糙的边缘,刮板的磨损、压力和硬度决定印刷质量,应该仔细监测。对可接受的印刷品质,刮板边缘应该锋利、平直和直线。 模板(stencil)类型目前使用的模板主要有不锈钢模板,其的制作主要有三种工艺:化学腐蚀、激光切割和电铸成型。由于金属模板和金属刮板印出的锡膏较饱满,有时会得到厚度太厚的印刷, 这可以通过减少模板的厚度的方法来纠正。另外可以通过减少(“微调”)丝孔的长和宽10 %,以减少焊盘上锡膏的面积。从而可改善因焊盘的定位不准而引起的模板与焊盘之间的框架的密封情况, 减少了锡膏在模板底和PCB 之间的“ 炸 开 ”。可使印刷模板底面的清洁次数由每5或10 次印刷清洁一次减少到每50次印刷清洁一次。锡膏印刷板清洗剂--锡膏(solder paste)锡膏是锡粉和松香(resin)的结合物,松香的功能是在回流(reflowing)焊炉的第一阶段,除去元件引脚、焊盘和锡珠上的氧化物,这个阶段在150 C持续大约三分钟。焊锡是铅、锡和银的合金,在回流焊炉的第二阶段,大约220 C时回流。粘度是锡膏的一个重要特性,我们要求其在印刷行程中,其粘性越低,则流动性越好,易于流入模板孔内,印到PCB的焊盘上。在印刷过后,锡膏停留在PCB焊盘上,其粘性高,则保持其填充的形状,而不会往下塌陷。锡膏的标准粘度大约在500kcps~1200kcps范围内,较为典型的800kcps用于模板丝印是理想的。判断锡膏是否具有正确的粘度,有一种实际和经济的方法,如下:用刮勺在容器罐内搅拌锡膏大约30秒钟,然后挑起一些锡膏,高出容器罐三、四英寸,让锡膏自行往下滴,开始时应该象稠的糖浆一样滑落而下,然后分段断裂落下到容器罐内。如果锡膏不能滑落,则太稠,粘度太低。如果一直落下而没有断裂,则太稀,粘度太低。印刷的工艺参数的控制模板与PCB的分离速度与分离距离(Snap-off)丝印完后,PCB与丝印模板分开,将锡膏留在PCB 上而不是丝印孔内。对于最细密丝印孔来说,锡膏可能会更容易粘附在孔壁上而不是焊盘上,模板的厚度很重要, 有两个因素是有利的, 第一, 焊盘是一个连续的面积, 而丝孔内壁大多数情况分为四面,有助于释放锡膏;第二,重力和与焊盘的粘附力一起, 在丝印和分离所花的 2~6 秒时间内,将锡膏拉出丝孔粘着于PCB上。为最大发挥这种有利的作用,可将分离延时,开始时PCB分开较慢。很多机器允许丝印后的延时,工作台下落的头2~3 mm 行程速度可调慢。印刷速度印刷期间,刮板在印刷模板上的行进速度是很重要的, 因为锡膏需要时间来滚动和流入模孔内。如果时间不够,那么在刮板的行进方向,锡膏在焊盘上将不平。当速度高于每秒20 mm 时, 刮板可能在少于几十毫秒的时间内刮过小的模孔。印刷压力印刷压力须与刮板硬度协调,如果压力太小,刮板将刮不干净模板上的锡膏,如果压力太大,或刮板太软,那么刮板将沉入模板上较大的孔内将锡膏挖出。压力的经验公式在金属模板上使用刮板, 为了得到正确的压力, 开始时在每50 mm的刮板长度上施加1 kg 压力,例如300 mm 的刮板施加6 kg 的压力, 逐步减少压力直到锡膏开始留在模板上刮不干净,然后再增加1 kg 压力。在锡膏刮不干净开始到刮板沉入丝孔内挖出锡膏之间,应该有1~2 kg的可接受范围都可以到达好的丝印效果。为了达到良好的印刷结果,必须有正确的锡膏材料(黏度、金属含量、最大粉末尺寸和尽可能最低的助焊剂活性)、正确的工具(印刷机、模板和刮刀)和正确的工艺过程(良好的定位、清洁拭擦)的结合。根据不同的产品,在印刷程序中设置相应的印刷工艺参数,如工作温度、工作压力、刮刀速度、模板自动清洁周期等,同时要制定严格的工艺管理制定及工艺规程。① 严格按照指定品牌在有效期内使用焊膏,平日焊膏保存在冰箱中,使用前要求置于室温6小时以上,之后方可开盖使用,用后的焊膏单独存放,再用时要确定品质是否合格。② 生产前操作者使用专用不锈钢棒搅拌焊膏使其均匀,并定时用黏度测试仪对焊膏黏度进行抽测。③当日当班印刷首块印刷析或设备调整后,要利用焊膏厚度测试仪对焊膏印刷厚度进行测定,测试点选在印刷板测试面的上下,左右及中间等5点,记录数值,要求焊膏厚度范围在模板厚度-10%-模板厚度+15%之间。④ 生产过程中,对焊膏印刷质量进行100%检验,主要内容为焊膏图形是否完整、厚度是否均匀、是否有焊膏拉尖现象。⑤ 当班工作完成后按工艺要求清洗模板。⑥在印刷实验或印刷失败后,印制板上的焊膏要求用超声波清洗设备进行彻底清洗并晾干,或用酒精及用高压气清洗,以防止再次使用时由于板上残留焊膏引起的回流焊后出现焊球等现象。5.1. 贴装贴装前应进行下列项目的检查:元器件的可焊性、引线共面性、包装形式PCB尺寸、外观、翘曲、可焊性、阻焊膜(绿油)Feeder 位置的元件规格核对是否有需要人工贴装元器件或临时不贴元器件、加贴元器件Feeder与元件包装规格是否一致。贴装时应检查项目:检查所贴装元件是否有偏移等缺陷,对偏移元件要进行位置调整。检查贴装率,并对元件与贴片头进行时时临控。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 晶圆级封装(WLP)芯片焊剂清洗剂合明科技分享:什么是先进封装?

    晶圆级封装(WLP)芯片焊剂清洗剂合明科技分享:什么是先进封装?

    什么是先进封装?-晶圆级封装(WLP)芯片焊剂清洗剂合明科技分享合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。传统封装需要将每个芯片都从晶圆中切割出来并放入模具中。晶圆级封装(WLP)则是先进封装技术的一种, 是指直接封装仍在晶圆上的芯片。WLP的流程是先封装测试,然后一次性将所有已成型的芯片从晶圆上分离出来。与传统封装相比,WLP的优势在于更低的生产成本。先进封装可划分为2D封装、2.5D封装和3D封装。更小的2D封装如前所述,封装工艺的主要用途包括将半导体芯片的信号发送到外部,而在晶圆上形成的凸块就是发送输入/输出信号的接触点。这些凸块分为扇入型(fan-in) 和扇出型 (fan-out) 两种,前者的扇形在芯片内部,后者的扇形则要超出芯片范围。我们将输入/输出信号称为I/O(输入/输出),输入/输出数量称为I/O计数。I/O计数是确定封装方法的重要依据。如果I/O计数低就采用扇入封装工艺。由于封装后芯片尺寸变化不大,因此这种过程又被称为芯片级封装 (CSP) 或晶圆级芯片尺寸封装 (WLCSP)。如果I/O计数较高,则通常要采用扇出型封装工艺,且除凸块外还需要重布线层 (RDL) 才能实现信号发送。这就是“扇出型晶圆级封装 (FOWLP)”。2.5D 封装2.5D封装技术可以将两种或更多类型的芯片放入单个封装,同时让信号横向传送,这样可以提升封装的尺寸和性能。最广泛使用的2.5D封装方法是通过硅中介层将内存和逻辑芯片放入单个封装。2.5D封装需要硅通孔 (TSV)、微型凸块和小间距RDL等核心技术。3D 封装3D封装技术可以将两种或更多类型的芯片放入单个封装,同时让信号纵向传送。这种技术适用于更小和I/O计数更高的半导体芯片。TSV可用于I/O计数高的芯片,引线键合可用于I/O计数低的芯片,并最终形成芯片垂直排列的信号系统。3D封装需要的核心技术包括TSV和微型凸块技术。—End—本文转载自“泛林半导体设备技术”针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 先进封装芯片堆叠焊接残留清洗剂合明科技分享:电子集成技术全面解析

    先进封装芯片堆叠焊接残留清洗剂合明科技分享:电子集成技术全面解析

    先进封装芯片堆叠焊接残留清洗剂合明科技分享:电子集成技术全面解析合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多.新一代芯片尺寸封装清洗剂,倒芯封装,晶圆级芯片尺寸封装,三维集成电路封装,系统级封装,细间距封装芯片清洗剂文章来源:Suny Li SiP与先进封装技术集成电路属于电子集成技术的一种,那么,现在的电子集成技术发展到了什么程度呢?先进的电子集成技术可以在不到芝麻粒大小的1平方毫米内集成1亿只以上的晶体管,一个指甲盖大小的芯片上集成的晶体管数量可轻松超过100亿甚至更多,而目前地球上的总人口才不到80亿。电子集成 (5+2) 分类法,2D集成,2D+集成,2.5D集成,3D集成,4D集成,Cavity集成,Planar集成,共七种集成方式。电子集成 (5+2) 分类法电子集成技术分为三个层次,芯片上的集成,封装内的集成,PCB板级集成,其代表技术分别为SoC,SiP和PCB(也可以称为SoP或者SoB)。芯片上的集成主要以2D为主,晶体管以平铺的形式集成于晶圆平面;同样,PCB上的集成也是以2D为主,电子元器件平铺安装在PCB表面,因此,二者都属于2D集成。而针对于封装内的集成,情况就要复杂的多,并且业界目前对电子集成的分类还没有形成统一的共识,这也是我写这篇文章的原因之一。理解集成的时候,人们通常通过物理结构来判断,今天,我们提出电子集成技术分类的两个重要判据:1.物理结构,2.电气连接(电气互连)。通过这两个判据,我们将电子集成分为7类:2D集成,2D+集成,2.5D集成,3D集成,4D集成,Cavity集成,Planar集成。其中前面5类是位于基板之上,属于组装(Assembly)范畴,后面2类位于基板之内,属于基板制造(Fabrication)范畴。故此命名为(5+2)分类法。请参看下表:2D 集成2D 集成是指在基板的表面水平安装所有芯片和无源器件的集成方式。以基板 (Substrate) 上表面的左下角为原点,基板上表面所处的平面为XY平面,基板法线为Z轴,创建坐标系。物理结构:所有芯片和无源器件均安装在基板平面,芯片和无源器件和 XY 平面直接接触,基板上的布线和过孔均位于 XY 平面下方;电气连接:均需要通过基板(除了极少数通过键合线直接连接的键合点)。我们最常见的2D集成技术应用于MCM、部分SiP以及PCB。MCM(Multi Chip Module)多芯片模块是将多个裸芯片高密度安装在同一基板上构成一个完整的部件。在传统的封装领域,所有的封装都是面向器件的,为芯片服务,起到保护芯片、尺度放大和电气连接的作用,是没有任何集成的概念的。随着MCM兴起,封装中才有了集成的概念,所以封装也发生了本质的变化,MCM将封装的概念由芯片转向模块、部件或者系统。2D集成的SiP,其工艺路线和MCM非常相似,和MCM主要的区别在于2D集成的SiP规模比MCM大,并且能够形成独立的系统。首先制作有机基板或者高密度陶瓷基板,然后在此基础上进行封装和测试。2D 集成示意图此外,基于FOWLP的集成,例如INFO,虽然没有基板,也可以归结为2D集成。2D+ 集成2D+集成是指的传统的通过键合线连接的芯片堆叠集成。也许会有人问,芯片堆叠不就是3D吗,为什么要定义为2D+集成呢?主要基于以下两点原因:1)3D集成目前在很大程度上特指通过3D TSV的集成,为了避免概念混淆,我们定义这种传统的芯片堆叠为2D+集成;2)虽然物理结构上是3D的,但其电气互连上均需要通过基板,即先通过键合线键合到基板,然后在基板上进行电气互连。这一点和2D集成相同,比2D集成改进的是结构上的堆叠,能够节省封装的空间,因此称之为2D+集成。物理结构:所有芯片和无源器件均地位于XY平面上方,部分芯片不直接接触基板,基板上的布线和过孔均位于XY平面下方;电气连接:均需要通过基板(除了极少数通过键合线直接连接的键合点)。下图所示几种集成均属于2D+集成。2D+ 集成示意图此外,对于PoP (Package on Package) 类的集成方式,也可以根据其物理结构和电气连接,将其归结为2D+集成。2.5D 集成2.5D顾名思义是介于2D和3D之间,通常是指既有2D的特点,又有部分3D的特点的一种维度,现实中并不存在2.5D这种维度。物理结构:所有芯片和无源器件均XY平面上方,至少有部分芯片和无源器件安装在中介层上(Interposer),在XY平面的上方有中介层的布线和过孔,在XY平面的下方有基板的布线和过孔。电气连接:中介层(Interposer)可提供位于中介层上的芯片的电气连接。2.5D集成的关键在于中介层Interposer,一般会有几种情况,1)中介层是否采用硅转接板,2)中介层是否采用TSV,3)采用其他类型的材质的转接板;在硅转接板上,我们将穿越中介层的过孔称之为TSV,对于玻璃转接板,我们称之为TGV。硅中介层有TSV的集成是最常见的一种2.5D集成技术,芯片通常通过MicroBump和中介层相连接,作为中介层的硅基板采用Bump和基板相连,硅基板表面通过RDL布线,TSV作为硅基板上下表面电气连接的通道,这种2.5D集成适合芯片规模比较大,引脚密度高的情况,芯片一般以FlipChip形式安装在硅基板上。有TSV的2.5D集成示意图硅中介层无TSV的2.5D集成的结构一般如下图所示,有一颗面积较大的裸芯片直接安装在基板上,该芯片和基板的连接可以采用Bond Wire或者Flip Chip两种方式,大芯片上方由于面积较大,可以安装多个较小的裸芯片,但小芯片无法直接连接到基板,所以需要插入一块中介层(Interposer),在中介层上方安装多个裸芯片,中介层上有RDL布线,可将芯片的信号引出到中介层的边沿,然后通过Bond Wire连接到基板。这类中介层通常不需要TSV,只需要通过Interposer上表面的布线进行电气互连,Interposer采用Bond Wire和封装基板连接。无TSV的2.5D集成示意图现在,EDA工具对2.5D集成有了很好的支持,下图所示为Mentor (Siemens EDA) 中实现的2.5D集成设计。Siemens EDA中实现的2.5D集成设计3D 集成3D集成和2.5D集成的主要区别在于:2.5D集成是在中介层Interposer上进行布线和打孔,而3D集成是直接在芯片上打孔(TSV)和布线(RDL),电气连接上下层芯片。物理结构:所有芯片和无源器件均位于XY平面上方,芯片堆叠在一起,在XY平面的上方有穿过芯片的TSV,在XY平面的下方有基板的布线和过孔。电气连接:通过TSV和RDL将芯片直接电气连接。3D集成大多数应用在同类芯片堆叠中,多个相同的芯片垂直堆叠在一起,通过穿过芯片堆叠的TSV互连,如下图所示。同类芯片集成大多应用在存储器集成中,例如DRAM Stack,FLASH Stack等。同类芯片的3D集成示意图不同类芯片的3D集成中,一般是将两种不同的芯片垂直堆叠,并通过TSV电气连接在一起,并和下方的基板互连,有时候需要在芯片表面制作RDL来连接上下层的TSV。不同类芯片的3D集成示意图现在,EDA工具对3D集成有了很好的支持,下图所示为Mentor (Siemens EDA) 中实现的3D集成设计。Siemens EDA中实现的3D集成设计4D 集成前面介绍了2D,2D+,2.5D,3D集成,4D集成又是如何定义的呢?在前面介绍的几种集成中,所有的芯片(Chip),中介板(interposer)和基板(Substrate),在三维坐标系中,其Z轴均是竖直向上,即所有的基板和芯片都是平行安装的。在4D集成中,这种情况则发生了改变。当不同基板所处的XY平面并不平行,即不同基板的Z轴方向有所偏移,我们则可定义此类集成方式为4D集成。物理结构:多块基板以非平行方式安装,每块基板上都安装有元器件,元器件安装方式多样化。电气连接:基板之间通过柔性电路或者焊接连接,基板上芯片电气连接多样化。基于刚柔基板的4D集成示意图气密性陶瓷4D集成示意图4D集成定义主要是关于多块基板的方位和相互连接方式,因此在4D集成也会包含有2D,2D+,2.5D,3D的集成方式。通过4D集成技术可以解决平行三维堆叠所无法解决的问题,提供更多、更灵活的芯片安装空间,解决大功率芯片的散热问题,以及航空航天、军工等领域应用中最主要的气密性问题。现在,EDA工具对4D集成也有了很好的支持,如下图所示为Mentor (Siemens EDA) 中实现的4D集成设计。Siemens EDA中实现的4D集成设计4D集成技术提升了集成的灵活性和多样化,展望未来,在SiP的集成方式中,4D集成技术必定占有一席之地,并将成为继2D、2D+、2.5D、3D集成技术之后重要的集成技术。从严格物理意义上来说,以现有的人类认知出发,所有的物体都是三维的, 二向箔并不存在,四维空间更待考证。为了便于区分多种不同的集成方式,我们将其分为2D、2D+、2.5D、3D,4D这5种集成方式。Cavity 集成Cavity腔体是在基板上开的一个孔槽,通常不会穿越所有的板层。腔体可以是开放式的,也可以是密闭在内层空间的腔体,腔体可以是单级腔体也可以是多级腔体,所谓多级腔体就是在一个腔体的内部再挖腔体,逐级缩小,如同城市中的下沉广场一样。多级腔体示意图埋入式腔体示意图通过腔体结构可以提升键合线的稳定性,增强陶瓷封装的气密性,并且可以通过腔体结构双面安装元器件。通过腔体结构提高键合线稳定性通过腔体结构双面安装元器件Planar 集成Planar集成技术也称为平面埋置技术,是通过特殊的材料制作电阻、电容、电感等平面化无源器件,并印刷在基板表面或者嵌入到基板的板层之间的一种技术。将电阻、电容、电感等无源元件通过设计和工艺的结合,以蚀刻或印刷方法将无源元件做在基板表层或者内层,用来取代基板表面需要焊接的无源元件,从而提高有源芯片的布局空间及布线自由度,这种方法制作的电阻、电容、电感基本没有高度,不会影响基板的厚度。7种集成技术汇总通过下面一个表格,我们将电子集成技术进行汇总,通过物理结构和电气连接两大指标对7种集成技术进行分类,并通过图例查看其典型的结构。在下面一张图中,我们将7种集成技术汇聚到了一个设计中,让它们来一个大团圆。在基板的表面从左至右分别是2D, 2D+, 2.5D, 3D, 4D五种集成,在基板内部则包含了Cavity和Planar两种集成。今天,我们从物理结构和电气连接两大判据,总结了七种电子集成技术。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 油性溶剂油墨丝印网板环保洗网水低VOC含量洗车水合明科技分享:中国PCB市场目前有哪些痛点?​

    油性溶剂油墨丝印网板环保洗网水低VOC含量洗车水合明科技分享:中国PCB市场目前有哪些痛点?​

    中国PCB市场目前有哪些痛点?-油性溶剂油墨丝印网板环保洗网水低VOC含量洗车水合明科技分享油墨丝印网板环保清洗剂合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多。印制电路板是电子产品的关键电子互联件,被誉为“电子产品之母”。印制电路板的下游分布广泛,涵盖通信设备、计算机及其周边、消费电子、工业控制、医疗、汽车电子、军事、航天科技等领域,不可替代性是印制电路板制造行业得以始终稳固发展的要素之一。我国印制电路板发展起步较晚制作PCB板的高端技术落后于发达国家1956年,我国开始开展印制电路板的研制工作,相比发达国家,我国落后将近二十年才开始参与并进入PCB市场。世界上第一次出现印刷电路概念是在1936年,是由一位叫Eisler的英国博士提出,并且他首创了印刷电路相关技术——铜箔腐蚀法工艺。近年来,我国经济迅猛发展,加之政策对高新技术的支持,我国印制电路板在良好的大环境下发展迅速。2006年,是我国PCB发展的标志性的一年。这一年,我国成功超越日本,成为全球产值最大的PCB生产基地。随着5G商用时代的来临,各大运营商未来在5G建设上投入较大,因此对我国印刷电路板的技术加快更新速度的需求。然而,目前我国只是世界印制电路的制造大国,但不是强国,有不少技术还落后于美日欧这些发达国家。尽管在2006年,我国的PCB产值超过日本,成为全球最大的PCB生产国,但是我国主要生产的是PCB批量板,真正技术含量较高的PCB样板的生产商却寥寥无几,目前我国主要做PCB样板的厂商有兴森科技和崇达技术。PCB样板的制作过程主要包含新产品研究、试验、开发和中试,此类PCB的订单特点主要为面积小、品类多,因此PCB样板单个订单面积一般低于5平方米,PCB样板企业的定位是为客户提供以上服务,与批量板企业相比,客户对样板厂的响应速度要求更高,因此,样板厂需要具备更强的生产组织和客户管理能力(管理及品控),这亦是样板企业的核心竞争力之一。批量板是指在通过研发和试生产阶段后,有充分商业价值,可开始进行批量生产的PCB产品;因此批量板用于产品的商业化、规模化生产阶段,订单面积通常大于5平方米,因此对企业规模化生产能力要求较高。大批量板和小批量板都呈现出定制化特点然而小批量板厂商的毛利率较高PCB的分类方法有很多种,其中按客户的需求分类可以分为样板和批量板;按照单个订单面积的大小,批量板又可细分为小批量板和大批量板。两者的主要特点为:大批量板面向个人消费者,订单规模大;小批量板面向企业客户,定制化程度高。小批量板面向企业客户,定制化程度高;产品种类较多但是单个订单面积较小,一般不超过50平方米。小批量板主要应用于通信设备、工控医疗、航空航天、国防等领域,产品类型多,单种类型产品的需求量相对较小,但产品的定制化程度较高。大批量板面向个人消费者,订单规模大。大批量板终端下游客户一般面向个人消费者,主要应用于计算机、移动终端等消费电子领域;产品种类不多,但是单个订单面积较大,订单面积一般在50平方米以上。因为需要满足客户对最后产品的应用场景、材料、面积、性能参数要求,所以大批量板和小批量板均具有定制化特点,为了保证上游的稳定性,客户不会轻易更换PCB供应商,但是会根据报价在不同供应商之间分配订单份额。对于大批量板企业来说,在保证自身产品质量过硬的前提下,为了能够获得更多的订单份额,在定价策略上,为了巩固和下游客户的关系以获得更多的市场份额,大批量板企业一般只保证一个较为合理的毛利率,报价不会过高。当订单增多后,大批量板企业就能通过不断扩大产能规模降低成本和提升效率,随下游客户而起,进入良性循环之中。然而小批量PCB的应用领域多为新兴中高端领域,定制化程度更高,且向客户交货期限短,其众多特点带来的生产工艺和流程管理复杂性和较高技术难度,导致客户对厂家技术和良率要求较高。现今,国内中高端小批量PCB厂商较少,所以小批量PCB厂商对下游议价能力强,小批量PCB厂商在同等技术生产条件下毛利率相对更高。尽管PCB小批量板的毛利率更高,从企业层面来看,PCB小批量板的获利水平更高,但是我国PCB样板、小批量板厂商的数量较少的核心原因是PCB研发的技术较落后。技术壁垒导致许多PCB企业对样板市场望而却步,研发意味着投入大量的时间和金钱成本,并且对企业的人才培养和召集也有较高的要求。除了技术因素以外,还有其他因素成为了PCB小批量板厂商发展的痛点:来源:网络针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

上门试样申请 136-9170-9838 top