banner
关于合明 资讯中心
  • 集成电路板清洗合明科技分享:金锡合金密封空洞控制技术研究

    集成电路板清洗合明科技分享:金锡合金密封空洞控制技术研究

    集成电路板清洗合明科技分享:金锡合金密封空洞控制技术研究清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。欢迎点击了解更多“PCBA线路板清洗剂产品”作者:田爱民 赵鹤然(中国电子科技集团公司第四十七研究所)摘要:金锡合金密封工艺广泛应用于高可靠军用电子元器件产品上,对密封空洞的控制有很高的要求,基于此,以某型号控制电路需求为依托,针对陶瓷气密封装的密封空洞控制技术,研究了影响密封空洞的基本前提和关键因素。提出了焊料环设计、焊接气氛、原材料表面状态是决定密封空洞能否被有效控制的基本前提。在焊接峰值温度和焊接压力两个关键因素上进行优化方法对比实验,得出了最佳的提高密封空洞控制水平的有效方法。成果推广到多种封装形式上,有助于提高军用元器件密封质量,可广泛应用于航空航天和空间设备仪器的核心电路封装中,在行业内具有一定的指导意义。1 引言金锡合金密封是高可靠性集成电路封装行业内的主流密封技术,具有焊接强度高、耐腐蚀性强、气密性良好的特点,广泛使用在航空、航天、导弹、船舶等高可靠元器件上。对于航天和军用产品气密封装,主要关注气密性、内部气氛、焊接强度、密封空洞等方面,随着密封技术的不断提升和设备能力进步,大多数问题都已解决,成品率得到很大提升,但是在密封空洞控制技术上还没有形成统一明确有效的控制方法和技术标准。密封空洞是一种较为常见的封装质量隐患,它的存在会使产品的密封强度和气密性降低,随着服役时间的延长,极易诱发多种致命的失效模式。引起密封空洞的因素有多种,包括温度曲线、焊接压力、原材料表面状态、焊料环设计、焊接气氛等。近年来随着 X 射线设备的普及和宇航级半导体集成电路通用规范的推广,行业内大多数用户都对密封空洞控制提出了明确的要求。以某型号控制电路的需求为依托,主要研究陶瓷气密封装的密封空洞控制技术,分别阐述密封空洞控制的基本前提和主要因素,总结各种常见失效现象的原因和机理,提出一种有效规范的密封空洞控制方法。2 密封空洞的影响因素2.1 焊料环设计与管壳密封区相匹配的焊料环设计是控制焊接空洞的基本前提之一。在低温烧结密封过程中,焊料环的宽度决定了焊料融化后可以有效铺展的范围。如果焊料环的宽度相对于密封区域过窄,在密封过程中,熔融焊料由于总量不足,无法填满整个密封区域,必然会在边缘或者内部形成密封空洞,一些部位的焊料层厚度也会明显比周围的区域要薄,这就对密封可靠性造成非常大的隐患;如果焊料环的宽度相对于密封区域过宽,焊料总量过于充分,受热熔化后势能增大,极具铺展性,固化后,往往会溢出密封区域,甚至爬到盖板表面。2.2 焊接气氛良好的焊接气氛也是控制焊接空洞率的基本前提之一。根据金锡合金的氧化机理,氧易与金锡合金中的锡反应生成金属氧化物,在表面形成氧化膜,反应过程如下式所示。氧化膜在密封过程中阻碍熔融焊料与金属镀层之间的浸润,导致焊料熔融状态铺展不良,形成焊接空洞。控制焊接气氛的核心要素有两个,一是保护气体的纯度,二是焊接炉腔体内抽真空的真空度。这两个因素共同作用,可以有效避免焊接过程中焊料的氧化。2.3 原材料表面状态表面状态不良对焊接空洞有较大影响,包括表面沾污、划伤、氧化、镀层缺陷、平整度等因素,都会阻碍焊料的流淌和浸润。良好的表面状态也是控制焊接空洞的基本前提之一。可采用外部目检将镀层缺陷、表面沾污、划伤等不合格品剔除。进一步,采用等离子清洗对管壳表面和盖板焊料环表面进行清洗,以去除原材料表面的氧化物和有机物。2.4 温度曲线焊接温度曲线是控制焊接空洞的核心要素之一。温度曲线的精确设计,相当于是对焊料融化和流淌过程的精确控制。在焊接温度设计中,温度过高或者加热时间过长,焊料熔融剧烈,流淌性很强,部分焊料会溢出封焊区域,造成密封区内焊料不足,进而形成空洞;反之,焊料熔化不充分,熔融后的焊料较脆,铺展效果不好,边缘区域的焊接效果无法保证,多发空洞现象。2.5 焊接压力焊接压力也是控制焊接空洞的核心要素之一。焊接压力,与焊接温度、焊料状态之间存在微妙的平衡。一方面,焊接压力的施加,可以弥补焊接温度、焊料状态等因素的设计缺陷,对焊料提供铺展的驱动力,加强焊料的铺展作用。另一方面,焊接压力与空洞的控制关系非常密切,适当的加压一方面可以使母材和焊料形成紧密的接触,有利于金镀层与金锡焊料之间扩散反应的进行;除此之外,由于焊料受到挤压沿着焊接面间隙外溢运动,可以排除焊料中吸附的气体成分,从而降低密封的空洞。3 密封工艺优化方法及实验结果3.1 密封空洞控制的前提在 2.1-2.3 中已经提到,焊料环的设计、焊接气氛的控制、原材料表面状态是控制密封空洞的前提。上述三个因素如果出现异常,密封效果会出现较大的偏差,在比较严重的情况下,不但密封空洞难以控制,还会衍生出新的失效模式。想了解更多关于PCBA线路板清洗的内容,请访问我们的“PCBA线路板清洗”专题(1)焊料环优化设计要想确保密封完成后焊料在合理范围内流淌,焊料环宽度ε1,焊料环距密封区内侧距离 ε2,盖板外侧密封区宽度ε3,三个宽度必须符合一定的比例,且倒角设计要求密封区内侧倒角与焊料环内侧倒角半径一致,密封区外侧倒角与焊料环外侧倒角半径一致,如图 1 所示。经过大量实验总结出,ε2 在0.005-0.010 英寸,ε3 在 0.010-0.015 英寸。ε1、ε2、ε3 的比例关系是焊料环设计的关键,不同生产线应有不同的控制规范。图 2 为焊料环优化前后的密封效果对比图,从图中可以看出,焊料环设计过窄,密封后封焊区域靠近管腔一侧边缘空洞明显;焊料环设计过宽,密封过程中焊料极易溢出封焊区,形成爬盖或者内溢形成泪滴状焊球。焊料优化设计后,焊接效果良好,基本无空洞。(2)焊接气氛控制在密封过程中,一般要求真空炉内真空度小于1.0Pa,氮气纯度在 99.999% 以上,以避免在焊接过程中,氧化反应参与到共晶反应当中,在焊料表面形成氧化膜,阻碍金锡焊料与母材的浸润。图 3 为焊接气氛控制前后密封效果对比。3.2 密封空洞控制的核心要素在 2.4-2.5 中已经提到,焊接温度曲线和焊接压力是控制密封空洞的核心要素,对空洞的大小和数量有直接的影响。(1)焊接温度曲线优化设计图 4 是某型号 DIP8 电路优化前金锡合金密封的工艺曲线,通过现有工艺曲线在进行电路密封时,最大空洞的宽度占设计宽度的 20% 左右。通过大量工艺曲线优化实验发现,在温度曲线中,峰值温度对密封空洞的尺寸大小有非常大的影响,其余条件对空洞影响则较小。研究在原有工艺曲线基础上,针对焊接峰值温度设计了专项的优化方案,从 310℃至 340℃之间按每 10℃一个温度梯度设置优化试验方案,观察空洞率的变化。图 5 给出了不同峰值温度时的密封效果对比。表 1 是不同峰值温度时,最大空洞宽度占设计密封宽度的比值。从结果可以看出,峰值温度在 330℃时,密封后电路空洞的大小和数量要优于其他峰值温度密封后电路。(2)焊接压力优化设计焊接压力也是控制密封空洞尺寸的核心要素,通过不锈钢弹簧夹施加压力到管壳和盖板上,在4N~10N 焊接压力之间,以 2N 为步进单位进行优化试验。图 6 给出了不同焊接压力时的密封效果对比。表 2 是不同焊接压力时,最大空洞宽度占设计密封宽度的比值。根据表 2 中的结果可以看出,当焊接压力小于2N 时,密封空洞尺寸很大。焊接压力在 8N 时,密封效果后处于最优状态,电路空洞的大小和数量要优于其他焊接压力密封后的电路。4 方法的推广及验证根据优化后的密封控制方法,以 PGA84 和PGA132 封装形式的外壳为例,对密封效果进行了X 射线照相验证, 图 7 是 X 射线照相检验结果图。从图中可以看出,两种封装形式密封的效果良好,最大空洞宽度占设计宽度的 5% 以下,可见,研究结果可以推广到同类产品之上。5 结束语通过对陶瓷管壳集成电路密封空洞的实验研究,得到了金锡合金密封空洞控制的基本前提和关键因素。从试验结论可以看出,焊料环尺寸设计、焊接气氛控制、原材料表面状态是金锡合金密封空洞控制的基本前提,在控制好以上因素的基础之上,密封空洞的控制能够达到一个很高的水平;如果基本前提控制得不好,焊料的流淌很怪异,从而引发各种焊接问题,在此情况下空洞很难达到要求的控制标准。另一方面,对控制密封空洞的关键因素进行了总结,主要包括峰值温度和焊接压力两个关键项,并以DIP8 封装形式为例, 通过峰值温度和焊接压力的优化设计,大幅提高了金锡合金密封的质量控制水平,将空洞率降低到 5% 以下。 研究成果还以推广到 PGA84 和 PGA132 等多种封装形式上,效果良好。控制金锡合金密封空洞的优化方法有助于提高军用元器件的封质量,可广泛应用于导弹、飞船、雷达、舰艇、航天器等航空航天和空间设备仪器的核心电路封装中,在行业内具有一定的指导意义。文章来源: 半导体封装工程师之家欢迎点击了解更多“PCBA线路板清洗剂产品”电路板上的污染物有多种,可归纳为离子型和非离子型两大类。离子型污染物接触到环境中的湿气,通电后发生电化学迁移,形成树枝状结构体,造成低电阻通路,破坏了电路板功能。非离子型污染物可穿透PC B 的绝缘层,在PCB板表层下生长枝晶。除了离子型和非离子型污染物,还有粒状污染物,例如焊料球、焊料槽内的浮点、灰尘、尘埃等,这些污染物会导致焊点质量降低、焊接时焊点拉尖、产生气孔、短路等等多种不良现象。这么多污染物,到底哪些才是最备受关注的呢?助焊剂或锡膏普遍应用于回流焊和波峰焊工艺中,它们主要由溶剂、润湿剂、树脂、缓蚀剂和活化剂等多种成分,焊后必然存在热改性生成物,这些物质在所有污染物中的占据主导,从产品失效情况来而言,焊后残余物是影响产品质量最主要的影响因素,离子型残留物易引起电迁移使绝缘电阻下降,松香树脂残留物易吸附灰尘或杂质引发接触电阻增大,严重者导致开路失效,因此焊后必须进行严格的清洗,才能保障电路板的质量。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。

  • 怎样清洗PCBA板和介绍PCB软硬结合板

    怎样清洗PCBA板和介绍PCB软硬结合板

    怎样清洗PCBA板和介绍PCB软硬结合板 PCB软硬结合板,也就是刚柔PCB板,他是在应用中结合了柔性和刚性电路板技术的电路板。清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。大多数刚挠性板由多层挠性电路基板组成,这些挠性电路基板从外部和/或内部附接到一个或多个刚性板上,具体取决于应用程序的设计。柔性基板被设计为处于恒定的挠曲状态,并且通常在制造或安装期间形成为挠曲曲线。 刚性-Flex设计比典型的刚性板环境的设计更具挑战性,因为这些板是在3D空间中设计的,这也提供了更高的空间效率。通过能够在三个维度上进行设计,刚性挠性设计者可以扭曲,折叠和卷起柔性板基材,以达到最终应用包装所需的形状。1. 刚柔性PCB制造应用刚-柔性PCB提供了从智能设备到手机和数码相机的广泛应用。刚挠性板制造已经越来越多地用于诸如起搏器之类的医疗设备中,以减小其空间并减轻重量。刚性挠性PCB的使用具有相同的优势,可以应用于智能控制系统。在消费类产品中,PCB软硬结合板不仅使空间使用最大化和重量最小化,而且还大大提高了可靠性,从而消除了对焊接接头以及易出现连接问题的脆弱易碎接线的许多需求。这些只是一些示例,但刚柔结合的PCB可以使几乎所有先进的电气应用受益,包括测试设备,工具和汽车。如果PCB 没有保持适当的清洁,在 PCB 装配或修改过程中使用的某些材料可导致严重的电路功能性问题。此类现象中最为常见的问题之一就是焊剂。 焊剂是一种化学制剂,用于协助将组件焊接至 PCB。但令人遗憾的是如果在焊接后不加以清除,焊剂会劣化 PCB 的表面绝缘电阻,在该过程中会给电路性能造成严重退化!焊剂清洁不当会造成严重的性能降低,特别是在高精度 DC 电路中。对所有手工装配或修改过的PCB,请务必使用超声波或者喷淋工艺完成最终清洁。在使用空气压缩机风干后,采用稍高温度烘烤装配并清洗后的 PCB,可清除任何残留湿气。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。以上便是怎样清洗PCBA板和PCB软硬结合板介绍,希望可以帮到您!欢迎点击了解更多“PCBA线路板清洗剂产品”

  • 封装基板氮化铝陶瓷基板焊后清洗,进一步了解介绍氮化铝陶瓷基板

    封装基板氮化铝陶瓷基板焊后清洗,进一步了解介绍氮化铝陶瓷基板

    封装基板氮化铝陶瓷基板焊后清洗,进一步了解介绍氮化铝陶瓷基板随着信息技术革命的到来,集成电路产业飞速发展,电子系统集成度的提高将导致功率密度升高,以及电子元件和系统整体工作产生的热量增加,因此,有效的电子封装必须解决电子系统的散热问题。清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。在此背景下,陶瓷基板具备优良的散热性能使得市场对其需求快速爆发,尤其是氮化铝陶瓷基板产品,尽管价格远高于其它基板,仍是供不应求甚至“一片难求”,这是为什么呢?(图片来源:中瓷电子)原因很简单,小编认为有三点:其一,性能好,用起来“香”,物有所值,在某些领域无法替代,一分钱一分货的道理大家都懂。其二,生产过程”历经八十一难”,得之不易,对原材料要求高,制品制备工艺复杂,生产门槛较高。其三,市场发展迅速,产能扩张速度跟不上需求增速,供货周期长,价格自然水涨船高。今天我们就这三点进一步了解氮化铝陶瓷基板。出色的导热性能首先,封装基板主要利用材料本身具有的高热导率,将热量从芯片 (热源) 导出,实现与外界环境的热交换。对于功率半导体器件而言,封装基板必须满足以下要求:(1)热导率高,满足器件散热需求;(2)耐热性好,满足功率器件高温(大于200°C)应用需求;(3)热膨胀系数匹配,与芯片材料热膨胀系数匹配,降低封装热应力;(4)介电常数小,高频特性好,降低器件信号传输时间,提高信号传输速率;(5)机械强度高,满足器件封装与应用过程中力学性能要求;(6)耐腐蚀性好,能够耐受强酸、强碱、沸水、有机溶液等侵蚀;(7)结构致密,满足电子器件气密封装需求。氮化铝性能如何呢?氮化铝作为陶瓷基板材料其性能如下:(1)氮化铝的导热率较高,室温时理论导热率最高可达320W/(m·K),是氧化铝陶瓷的8~10倍,实际生产的热导率也可高达200W/(m·K),有利于LED中热量散发,提高LED性能;(2)氮化铝线膨胀系数较小,理论值为4.6×10-6/K,与LED常用材料Si、GaAs的热膨胀系数相近,变化规律也与Si的热膨胀系数的规律相似。另外,氮化铝与GaN晶格相匹配。热匹配与晶格匹配有利于在大功率LED制备过程中芯片与基板的良好结合,这是高性能大功率LED的保障;(3)氮化铝陶瓷的能隙宽度为6.2eV,绝缘性好,应用于大功率LED时不需要绝缘处理,简化了工艺;(4)氮化铝为纤锌矿结构,以很强的共价键结合,所以具有高硬度和高强度,机械性能较好。另外,氮化铝具有较好的化学稳定性和耐高温性能,在空气氛围中温度达1000℃下可以保持稳定性,在真空中温度高达1400℃时稳定性较好,有利于在高温中烧结,且耐腐蚀性能满足后续工艺要求。由以上看来,氮化铝陶瓷具有高热导率、高强度、高电阻率、密度小、低介电常数、无毒、以及与Si 相匹配的热膨胀系数等优异性能,是最具发展前途的一种陶瓷基板材料。(图片来源:中电科43所)复杂繁琐的生产过程氮化铝陶瓷基板的生产过程较为复杂繁琐,其主要体现在两个方面,高端氮化铝粉体的制备与基板的制备。我们分别来了解下这两方面。1、氮化铝粉体几乎所有的陶瓷制品的质量都极大受到原材料品质的影响,对氮化铝陶瓷基板来说更是如此。(1)粉体制备方法目前制备氮化铝粉体的方法主要有Al2O3粉碳热还原法、Al粉直接氮化法、自蔓延高温合成法、化学气相沉积法、等离子体法等。AlN粉体作为一种性能优异的粉体原料,国内外研究者通过不断的科技创新来解决现有工艺存在的技术问题,同时也在不断探索新的、更高效的制备技术。目前最主要的工艺仍是碳热还原法和直接氮化法,这两种工艺具有技术成熟、设备简单、得到产品质量好等特点,已在工业中得到大规模应用。(来源:蒋周青等.氮化铝粉体制备技术的研究进展)(2)影响粉体性能因素较多氮化铝陶瓷产品的性能直接取决于原料粉体的特性,尤其是氮化铝最有价值的特性——导热性。影响氮化铝陶瓷导热性的因素主要有:氧及其它杂质的含量、烧结的致密度、显微结构等。而这些因素体现在氮化铝粉体上则为:氮化铝的纯度、颗粒的粒径、颗粒的形状等参数上。(3)易水解,难存储运输,需对粉体进一步改性处理相比氮化铝的其它优异性能,氮化铝粉体有个大问题就是容易水解。它在潮湿的环境极易与水中羟基形成氢氧化铝,在AlN粉体表面形成氧化铝层,氧化铝晶格溶入大量的氧,降低其热导率,而且也改变其物化性能,给AlN粉体的应用带来困难。目前的应对方法是,借助化学键或物理吸附作用在AlN颗粒表面涂覆一种物质,使之与水隔离,从而避免其水解反应的发生。抑制水解处理的方法主要有:表面化学改性和表面物理包覆。(来源:潮州三环)2、基板制备(1)陶瓷基片的成型流延成型制备氮化铝陶瓷基片的主要工艺,将氮化铝粉料、烧结助剂、粘结剂、溶剂混合均匀制成浆料,通过流延制成坯片,采用组合模冲成标准片,然后用程控冲床冲成通孔,用丝网印刷印制金属图形,将每一个具有功能图形的生坯片叠加,层压成多层陶瓷生坯片,在氮气中约700℃排除粘结剂,然后在1800℃氮气中进行共烧,电镀后即形成多层氮化铝陶瓷。此外,氮化铝基板的成型方式还有注射成型、流延等静压成型等。(2)关键步骤-烧结烧结可以说是氮化铝基板制备中至关重要的一步,主要牵扯到烧结方式的选择、烧结温度的控制、烧结助剂的添加、烧结气氛的控制等。目前AlN基片较常用的烧结工艺一般有5种,即热压烧结、无压烧结、放电等离子烧结(SPS)、微波烧结和自蔓延烧结。AlN陶瓷基片一般采用无压烧结,该烧结方法是一种最普通的烧结,虽然工艺简单、成本较低,但烧结温度一般偏高,在不添加烧结助剂的情况下,一般无法制备高性能陶瓷基片。在烧结炉中,烧结温度的均匀性深刻影响着AlN陶瓷。烧结温度均匀性的研究也为大批量生产、降低生产成本提供了保障,有利于实现AlN陶瓷基片产品的商业化生产。(图片来源:正天新材)对于陶瓷致密烧结,添加助烧剂无疑是最为经济、有效的方法。AlN陶瓷基板可选用的烧结助剂有CaO、Li2O、B2O3、Y2O3、CaF2、CaC2以及CeO2等。这些材料在烧结过程发挥着双重作用,首先与表面的Al2O3结合生成液相铝酸盐,在粘性流动作用下,加速传质,晶粒周围被液相填充,原有的粉料相互接触角度得以调整,填实或者排出部分气孔,促进烧结。同时助烧剂可与氧反应,降低晶格氧含量。在AlN陶瓷的烧结工艺中,烧结气氛的选择也十分关键的。一般的AlN陶瓷烧结气氛有3种:还原型气氛、弱还原型气氛和中性气氛。还原性气氛一般为CO,弱还原性气氛一般为H2,中性气氛一般为N2。在还原气氛中,AlN陶瓷的烧结时间及保温时间不宜过长,烧结温度不宜过高,以免AlN被还原。在中性气氛中不会出现上述情况,所以一般选择在氮气中烧结,这样可以获得性能更好的AlN陶瓷。市场状况在粉体方面,目前掌握高性能氮化铝粉生产技术的厂家并不多,主要分布在日本、德国和美国。日本的德山化工生产的氮化铝粉被全球公认为质量最好、性能最稳定,公司控制着高纯氮化铝全球市场75%的份额。日本东洋铝公司的氮化铝粉性能较好,在日本和中国受到不少客户的青睐。在国内,开展AlN粉研究、生产的厂家也有一些,主要有中电科第43所、国瓷材料、厦门钜瓷、宁夏艾森达新材料科技有限公司、宁夏时星科技有限公司、烟台同立高科新材料股份有限公司、辽宁德盛特种陶瓷制造有限公司、山东鹏程陶瓷新材料科技有限公司、三河燕郊新宇高新技术陶瓷材料有限公司、福建施诺瑞新材料有限公司、晋江华清新材料科技有限公司等。但是由于国内氮化铝粉末行业发展时间晚,产业化时间短,产量很低,粉体性能与国外相比也存在较大差距,只能满足国内部分市场的需求。而在陶瓷基片方面,我国氮化铝陶瓷基片生产企业规模较小,研发投入资金有限,技术人员较少且经验不足,导致我国氮化铝陶瓷基片行业整体水平较低,产品缺乏竞争力,以中低端产品为主,高端氮化铝基片同样依赖于进口。日本有多家企业研发和生产氮化铝陶瓷基片,是全球最大的氮化铝陶瓷基片生产国,主要研发生产氮化铝陶瓷基片产品的公司包括如京瓷、日本特殊陶业、住友金属工业、富士通、东芝、日本电气等。由于氮化铝陶瓷基片的特殊技术要求,加上设备投资大、制造工艺复杂,高端氮化铝陶瓷基片核心制造技术被日本等国家的几个大公司掌控。目前我国在加力追赶阶段,国内已有福建华清电子材料科技有限公司、中电科四十三所、三环集团、河北中瓷、合肥圣达电子、浙江正天新材料、深圳市佳日丰泰电子、宁夏艾森达、宁夏时星、福建臻璟、江苏富乐德、南京中江等多个企业实现了氮化铝陶瓷基板的国产化,随着中国下游电子产业的不断发展,未来氮化铝基板的市场需求也会随之增长;此外,随着我国氮化铝基板生产技术的不断提升,氮化铝基板产品也将不断升级,将会进一步推动其应用领域的拓展,需求规模也会得到扩张。整体来看,未来中国氮化铝基板行业发展前景十分广阔。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 回流焊后PCBA清洗合明科技分享:关于回流焊接温度曲线设置的研究

    回流焊后PCBA清洗合明科技分享:关于回流焊接温度曲线设置的研究

    回流焊后PCBA清洗合明科技分享:关于回流焊接温度曲线设置的研究清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。作者:姜海峡(天津铁路信号有限责任公司)摘要:从焊接机理及回流焊接温度曲线理论分析入手,阐述了回流焊接温度与焊接时间对PCBA(印制电路板组)焊接质量的影响,论述了回流焊接温度曲线的设置与测试方法,包括测试点的选取、热电偶的固定方法,并以监测采集板卡为例,利用文中叙述的回流焊接温度曲线设置方法,设置该产品的温度曲线。通过对比分析,可调整参数至更加理想的回流焊接温度曲线,从而对该方法进行了验证。随着电子技术的不断发展,电子元器件外形尺寸日益小型化,印制电路板组装日益高密度化,致使表面贴装技术(SMT)的工艺窗口越来越小,组装难度越来越大。如何建立良好而稳固的工艺,提高回流焊接的一次合格率,已经成为SMT技术的核心问题,解决这一问题的关键就在于回流焊接温度曲线的设置。一条适宜的温度曲线不仅应该确保PCBA上所有焊点润湿良好、焊接牢靠,还应该确保元器件及PCB(印制电路板)本身避免因受温度冲击而损坏。而温度冲击主要来源于温度曲线的升温斜率和降温斜率的影响。为此,本文将针对有铅回流焊接温度曲线设置及测试等内容展开论述。1 回流焊接温度曲线理论1.1 回流焊接的定义印刷机通过钢网将适量的焊锡膏施放在印制板的焊接部位,贴片机按程序将元器件贴放在焊接部位,焊锡膏将元器件粘在印制板上,通过回流焊炉的热源加热,使焊料熔化而再次流动浸润,将元器件焊接到印制板上。这一过程称为再流焊接,也称回流焊接。1.2 焊接机理焊锡膏的有效成分为焊锡合金粉和助焊剂。焊锡合金粉是易熔金属,其熔点低于被焊金属,有铅焊料熔点为183℃。当焊料被加热到熔点以上时,焊接金属表面在助焊剂的活化作用下,对金属表面的氧化层和污染物起到清洗作用,同时使金属表面获得足够的激活能。熔融的焊料在经过助焊剂净化的金属表面上进行浸润,发生扩散、熔解、冶金结合,在焊料和被焊接金属表面之间生成金属间结合层(焊缝),冷却后使焊料凝固,形成焊点。焊点的抗拉强度与焊缝的结构和厚度有关。焊缝不能太厚,因为金属间结合层(焊缝)的主要成分是Cu6Sn5,比较脆,且基板材料、焊盘、元器件焊端之间的热膨胀系数有差异,容易产生龟裂,造成失效。焊缝的厚度与焊接温度和时间成正比。例如,当焊接温度在熔点183℃以上但还未高出30℃时,在焊料和金属表面之间的扩散和熔解不能生成足够的焊缝,只有在高出熔点30~40℃并维持约2s的条件下才能生成良性的结合层。但焊接温度更高时,扩散反应率就加速,就会生成过多的恶性金属间结合层,焊点变得脆性而多孔。因此,合理设置回流焊接温度和时间是确保焊接质量、提高一次合格率的关键。1.3 回流焊接温度曲线的理论分析图1所示是一条理想状态下的回流焊接温度曲线。所谓温度曲线,实际上是指PCBA通过回流炉时,PCB上测试点的温度随时间变化的曲线,它能直观反映出该点在整个焊接过程中的温度变化,为获得最佳焊接效果提供了科学依据。该曲线由4个区间组成,即预热区、保温区、回流区和冷却区,前3个区间为加热区,最后1个区间为冷却区,大部分焊锡膏都能通过这4个温区成功实现回流焊接。现将各区间的温度、停留时间以及焊锡膏在各区的变化情况介绍如下。1)预热区,也叫斜坡区,焊接对象从室温开始逐步加热至大约150℃的区域,目的在于缩小与回流焊接区域的温差,此时焊料中的溶剂被挥发。此区域需要注意升温速率不能太快,以避免焊锡膏飞溅和元器件热应力损伤。但是升温速率也不宜太慢,以免焊锡膏感温过度而没有足够的时间达到活性温度,通常控制在1~3℃/s,时间控制在60~120s。2)保温区,也叫均温区或活性区,使焊接对象温度维持在焊料熔点以下(150~160℃)一段时间的区域。在此期间,焊料中助焊剂活化,并清除焊盘及引脚上的氧化物;PCB上不同质元器件温度趋于均匀、减少温差。时间控制在60~90s。时间过长会使焊锡膏再度氧化,提前使助焊剂失效。3)回流区,也叫再流区或焊接区,温度从保温区继续上升,超过焊锡膏熔点30~40℃,焊锡膏完全熔化并润湿元器件焊端与焊盘,同时发生扩散、熔解、冶金结合,形成金属间化合物。考虑元器件承受热应力因素,升温速率不应超过3℃/s。达到峰值温度的焊接时间不应超过10s,以免形成恶性金属间化合物,使焊点变脆。4)冷却区,焊接对象温度从最高点迅速下降到75℃以下,凝固焊点,完成焊接。降温过快将会引起元器件内部的温度应力,过缓又会导致焊盘的更多分解物进入焊锡中,产生灰暗毛糙的焊点,甚至引起焊点润湿不良和结合力弱,降温速率应控制在-3℃/s以内。2 温度曲线的设置与测试方法2.1 温度曲线的设置方法在大规模生产中,每个产品的实际温度曲线应根据所焊接的PCBA的特点(PCB的尺寸、元器件的密集程度、元器件的种类等)进行设置、测试来确定,即使使用同样的回流焊炉、同样的焊锡膏,不同的PCBA也需要通过试验确定适合的温度曲线。合适温度曲线的判定依据是焊点质量和元器件、PCB的材料损伤情况。前者包括焊点的外观形态、润湿情况、是否存在冷焊空洞及焊料与被焊接金属表面之间生成的金属间化合物的质量等;后者包括元器件开裂、变形,PCB分层、变色、变形等。这些不仅影响着回流焊接的一次合格率,还会给PC-BA带来致命的损伤。回流焊接温度曲线设置时需要考虑的关键因素及相关注意事项详见表1。表1中的关键因素大部分与焊接时间和温度有关。焊接时间的设置主要取决于回流焊炉温区长度和传送带速度;炉温的设置也与传送带速度、热传递量有关。传送带速度应由焊接的工艺时间、回流焊炉的温区总长度来确定。传送带速度确定以后才开始进行温度设定。带速慢、炉温可低些,因为较长的时间也可达到热平衡,反之可提高炉温。如果PCB上元器件密、大元器件多,达到热平衡需要较多热量,这就要求提高炉温;反之可降低炉温。2.2 温度曲线的测试方法温度曲线的测试,一般采用随PCB板一同进入炉膛内的温度采集器(即温度记忆装置)进行,测试采用K型热电偶,测试后将记忆装置数据输入PC专用测试软件,进行曲线数据分析处理,打印出PCB组件的温度曲线。这一套装置也称温度曲线测试仪。温度曲线设置好后,试生产前要通过曲线测试仪在测温板(焊好的产品PCBA)上进行测试确定。测试的关键在于测试点的选取和热电偶的固定。2.2.1 测试点的选取一般情况下至少应选取3个测试点,即能够反映PCBA上最高温度的点、最低温度的点及重点关注元器件的测试点。最高温度点一般在炉堂中间、无元器件处、元器件稀少处或小体积元器件处;最低温度点一般在大型元器件处(如PLCC)、大面积覆铜处、传输导轨或炉堂的边缘处、以及热风对流吹不到的位置。有BGA元件时,BGA测试点应不少于2个,即测试BGA元件锡球和BGA元件表面温度各1点;有QFP元件时,在引脚焊盘上选取1点测试引脚底部温度;还有1点用于测试PCB表面温度或CHIP元件温度。若一块PCB上有几个QFP元件时,应优先选取较大者为测试点。2.2.2 热电偶的固定热电偶的固定可以选用高温焊锡、高温胶带或红胶等方式,其中最佳方案是采用高温焊锡焊接在需要测量温度的地方(见图2);其次是用高温胶带固定,但没有直接焊接的效果好(见图3)。热电偶固定时应预先将原焊点处的焊料清除干净,测试端头不应翘起,形成的焊点应尽可能与真正焊点大小一致,这样不会影响温度的真实性。3 实际应用本文以监测采集板卡的回流焊接温度曲线设置为例,采用前文叙述的焊接机理及回流焊接温度曲线设置理论,设置该产品的温度曲线,并通过温度曲线测试仪测试其实际曲线,与理想温度曲线及制造商提供的焊锡膏回流焊接温度曲线进行比对分析,调整参数,最终获得满意的回流焊接温度曲线。3.1 实例用到的设备、仪器、材料及其特性本实例中用到的主要设备、仪器及材料详见表2,供应商提供的焊锡膏回流焊接温度曲线如图4所示。由图4可知,该焊锡膏的回流焊接峰值温度约为220℃,保温温度为150~160℃;预热时间约为1.3min(约80s),保温时间约为1min(即60s),回流焊接时间不足1min,全过程加热时间总共约为3.3min(即200s)。由此可见,预热时间占全程的4/10,保温时间占全程的3/10,回流焊接时间占全程的3/10。恰好用到的回流焊炉共有10个加热温区,并且长度均为370mm。因此,可以把回流焊炉10个温区分配为预热4个温区、保温3个温区、回流焊接3个温区,每个温区大约20s,传送带速度即为110cm/min(370mm/20s=18.5mm/s=111cm/min)。3.2 参数设置该产品的回流焊接过程参数设置见表3。3.3 实际温度曲线测试本文将使用KIC2000炉温测试仪,对监测采集板卡按上述参数设置的回流焊接进行温度曲线测试。分别选取最热点、集成电路芯片引脚、最冷点和贴片电阻焊端4个测试点,测试后所得温度曲线如图5所示,区间末实际板温见表3。3.4 参数调整从图5曲线可以看出,保温区温度略低,焊接温度峰值出现在回流区末端,焊点由最高温度点直接接触强冷空气,不利于形成良好焊点,需要将最高温度点略向前移,使焊接温度在回流区内形成由最高点下降的趋势。因此,对该产品的温度曲线进行了优化,重新设置的参数见表4,测试的温度曲线如图6所示,这条曲线基本接近供应商推荐的焊接温度曲线,当然还可以进一步调整、测试,以获得更加理想的焊接温度曲线。使用这条温度曲线加工的监测采集板卡,首件试制后,经使用视频显微镜检测,板面未见锡珠;焊点光亮饱满、润湿良好,器件及PCB均未见受损现象。量产后通电调试,整批产品合格率为100%。4 结语综上所述,设置温度曲线时,首先应对回流焊炉的结构、焊锡膏的性能、PCBA的尺寸及元器件的分布等情况进行全面了解,根据焊接机理和焊锡膏特性确定回流焊接峰值温度及合适的回流焊接时间,结合回流焊炉结构设置温区及传送带速度,运用传热学定律合理调整炉温,并与理想温度曲线进行比较并反复调整,直至获得实际产品所需要的合适的回流焊接温度曲线,以提高回流焊接一次合格率。来源: 半导体封装工程师之家针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂

  • PCBA板清洁,PCBA板返修要求重点介绍

    PCBA板清洁,PCBA板返修要求重点介绍

    PCBA板清洁,PCBA板返修要求重点介绍PCBA板返修是一个很重要的环节,一旦处理不好,会导致PCBA板报废,影响良率。清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。那么,PCBA板返修要求都有哪些?一、PCBA及潮湿敏感元器件的烘烤要求1、所有的待安装新元器件,必须根据元器件的潮湿敏感等级和存储条件,按照《潮湿敏感元器件使用规范》中相关要求进行烘烤除湿处理。2、如果返修过程需要加热到110℃以上,或者返修区域周围5mm以内存在其他潮湿敏感元器件的,必须根据元器件的潮湿敏感等级和存储条件,按照《潮湿敏感元器件使用规范》中相关要求进行烘烤去湿处理。3、对返修后需要再利用的潮湿敏感元器件,如果采用热风回流、红外等通过元器件封装体加热焊点的返修工艺,必须根据元器件的潮湿敏感等级和存储条件, 按照《潮湿敏感元器件使用规范》中相关要求进行烘烤去湿处理。对于采用手工铬铁加热焊点的返修工艺,在加热过程得到控制的前提下,可以不用进行预烘烤处理。二、PCBA及元器件烘烤后的存储环境要求烘烤后的潮湿敏感元器件、PCBA以及待更换的拆封新元器件,一旦存储条件超过期限,需要重新烘烤处理。三、PCBA返修加热次数的要求组件允许的返修加热累计不超过4次;新元器件允许的返修加热次数不超过5次;上拆下的再利用元器件允许的返修加热次数不超过3次。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。以上便是PCBA板清洁,PCBA板返修要求重点介绍,希望可以帮到您!欢迎点击了解更多“PCBA线路板清洗剂产品”

  • 动力电池FPC线路板清洗,FPC行业概览与产业链介绍

    动力电池FPC线路板清洗,FPC行业概览与产业链介绍

    动力电池FPC线路板清洗,FPC行业概览与产业链介绍FPC受益于智能手机、汽车电子等行业的需求爆发,成为近年来PCB行业各细分产品中增速最快的品类。清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。01 FPC行业概览印制电路板(PCB)是电子产品的关键电子互连件,通过电路将各种电子元器件连接起来,起到导通和传输的作用。按柔软度划分,PCB可分为刚性印制电路板、挠性(柔性)印制电路板(FPC)和刚挠结合印制电路板。FPC(Flexible Printed Circuit)即柔性印制线路板,简称软板。是由挠性覆铜板(FCCL)和软性绝缘层以接着剂(胶)贴附后压合而成。与传统 PCB 硬板相比,具有生产效率高、配线密度 高、重量轻、厚度薄、可折叠弯曲、可三维布线等显著优势,更加符合下游电子行业智 能化、便携化、轻薄化趋势,适用于小型化、轻量化和移动要求的电子产品。根据Prismark数据,2021-2026年,全球FPC市场规模将从141亿美元增长至172亿美元,CAGR为4.1%。02 FPC 产业链梳理FPC产业链直接原材料上游为挠性覆铜板FCCL,下游为终端消费电子产品。全球来看,目前日资企业占据产业链上游的绝对主导地位,短期格局不会改变。产业链下游产品呈现出日益多元化的发展态势。上游:FPC材料行行查数据显示,FPC产业链上游主要原材料包括:挠性覆铜板(FCCL)、覆盖膜、元器件、屏蔽膜、胶纸、钢片、电镀添加剂、干膜等八大类。挠性覆铜板(FCCL)FPC的所有加工工序均是在 FCCL 上完成的。FCCL是生产FPC的关键基材,成本占比达到40%-50%。FCCL主要由压延铜箔、聚酰亚胺(PI)薄膜或聚酯(PET)薄膜基材薄膜和胶黏剂,基材PI薄膜是其核心原料。全球 FCCL 产能主要集中在日本、中国大陆、韩国以及中国台湾。随着国内 FCCL 产能不断释放,中国大陆 FPC 企业逐步实现在 FPC 上游原 材料领域的国产替代。FCCL主要生产厂商:聚酰亚胺聚酰亚胺(polyimide,PI),含有酰亚胺基的芳杂环,是目前工程塑料中耐热性最好的高分子材料之一国内的聚酰亚胺薄膜主要用于普通的电工级薄膜及电子产品的覆盖膜、补强膜等。市场高端PI浆料和PI膜,基本上被国外垄断。国内企业主要包括中国台湾地区的达迈科技和达胜科技,以及中国大陆的瑞华泰、时代新材、丹邦科技和鼎龙股份(PI浆料)等。而美国杜邦、日本钟渊化学、日本东丽、宇部兴产和韩国SKC这几家美日韩企业占据了PI市场份额的64%,形成了国外寡头垄断的局面。中游:FPC制造FPC是全球充分竞争行业,竞争格局集中,前四大厂商市占率之和己近70%。日本旗胜和鹏鼎控股为全球Top2 FPC供应商,其份额领先其他厂商较多。目前,全球领先企业在 FPC 产品制程能力上,其线宽线距可以达到 30-40μm、孔径达到 40-50μm,并进一步向 15μm 及以下线宽线距、40μm 以下孔径方向发展。国内本土头部企业在 FPC 产品制程能力上,也突破了 40-50μm 线宽线距、70-80μm 孔径技术,并进一步向 40μm 以下线宽线距、60μm 以下孔径制程能力突破。本土企业具有代表性的FPC厂商主要包括鹏鼎控股、东山精密、弘信电 子、传艺科技、上达电子、景旺电子等。近年来日系龙头旗胜科技开始转向高毛利的汽车市场,住友电工、藤仓等开始收缩A客户供应,鹏鼎控股和东山精密大力投入自动化产线,份额持续增长,台系企业则相对稳定。在 2021 年的PCB 全球产值分布中,中国台湾以 32.8%的占比位居第一,中国大陆的占比上升至 31.3%,排名第二,日本的产值占比下降至 17.2%,降幅超过 50%。近年来以日企为代表的海外 PCB 厂商扩产意愿较弱并逐步退出。中国大陆积极承接产业转移,PCB 产值及其在全球的 占比快速提升,未来国产FPC仍有广阔替代空间。资料来源:NT Information, 长城证券下游:终端应用FPC产业链下游为各类应用,包括显示/触控模组,指纹识别模组、摄像头模组等。最终应用包括消费电子、通讯设备、汽车电子、工控医疗、航空航天等领域。从下游看,智能手机功能创新及大容量电池压缩内部空间,FPC单机用量提升;可穿戴设备高增成长增加了FPC使用量;AR/VR飞速增长开辟了软板应用新场景;汽车电动化和智能化带来FPC单车价值量的大幅提升。其中动力电池FPC替代铜线束趋势明确,提升了FPC单车价值量约600元。随着下游终端产品更新换代 加速及其品牌集中度日益提高,头部 FPC 厂商凭借已有的技术和规模优势。通过筑高行业壁垒,巩固竞争中的优势地位,进一步提高了 行业市场集中度。伴随中国 FPC 产业链配套的进一步完善、技术水平的稳步提高以及产能规模的不断提升,内资 FPC 企业有能力满足新能源 汽车与新兴消费电子产品对于 FPC 的需求,国内 FPC 企业竞争力将持续增强,市场份额也将随之增加。来源:乐晴智库针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂

  • 电子工业清洗剂合明科技分享:功率电子封装结构设计的研究

    电子工业清洗剂合明科技分享:功率电子封装结构设计的研究

    电子工业清洗剂合明科技分享:功率电子封装结构设计的研究清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。作者:王美玉 胡伟波 孙晓冬 汪青 于洪宇封装技术是一种将芯片与承载基板连接固定、引出管脚并将其塑封成整体功率器件或模块的工艺,主要起到电气连接、结构支持和保护、提供散热途径等作用。封装作为模块集成的核心环节,封装材料、工艺和结构直接影响到功率模块的热、电和电磁干扰等特性。目前成熟的封装技术主要是以银胶或锡基钎料等连接材料、引线连接等封装结构为主,耐高温、耐高压性能差,电磁兼容问题突出,无法提供高效的散热途径。近来,烧结银互连材料、三维集成封装结构等由于具有优异的耐高温、高导热性能,可以实现双面散热、大幅降低开关损耗,使得功率模块具有良好的热、电特性和可靠性,获得了越来越多的研究和关注,有望满足第三代半导体器件在高温、高压和高频领域的可靠应用。本文针对功率电子封装结构设计的最新研究进展进行了总结和展望。封装结构根据芯片组装方式和互连工艺的不同,功率电子封装结构可分为焊接式封装和压接式封装两种形式。封装结构的发展趋势如图4所示,其中焊接式封装可以采用引线键合、倒装芯片(BGA互连)、金属柱互连、凹陷阵列互连、沉积金属膜互连等结构。压接式封装是借助外界机械压力形成互连结构。为了便于对比分析,将上述几种封装方式的优缺点列于表6。引线键合具有技术成熟、成本低、布线灵活等优点。然而,引线键合的模块具有较高的寄生电感,只能从底板单面散热。并且,由于键合引线和芯片的CTE不匹配,产生较大的热-机械应力,使得焊点易疲劳失效,成为模块在功率循环过程中最主要的失效形式。图4 封装结构的发展趋势表6 封装结构对比目前功率电子封装结构逐渐从传统的引线键合标准封装结构向二次注塑(Overmold)、双面连接(Double-Side Bonding)、器件集成(Component Integration)、三维功率集成封装结构(3D Power Integration)发展。通过去除引线,可以降低电磁干扰、提高散热效率、增大集成度。其中,注塑结构为紧凑型平面封装,易于批量模块生产;双面连接结构可以实现双面散热,提高散热效率;器件集成结构可以将多种功能集成在模块内部,提高开关速度;三维功率集成结构是将芯片在垂直方向上堆叠连接,可大幅降低寄生电感,提升开关性能。相比于二维封装,三维封装具有显著的优点,如可以在垂直方向上大大缩短回路距离,降低寄生电感和电磁干扰,提高传输速度,提高开关性能,降低功率损耗;可以集成多种芯片和器件,如门极驱动电路、去耦电容、散热器等,进一步提高功率集成密度,缩小封装体积。但是,三维封装目前也面临一些挑战,如芯片叠层互连带来的热管理、生产工艺和良率等问题,制程工艺有待进一步完善。3.1 二次注塑封装二次注塑封装结构是在传统引线键合的封装结构基础上,将芯片直接粘接在引线框架上,去除了键合引线,并用环氧树脂进行注塑封装的结构。与引线键合的封装结构相比,注塑封装的芯片顶部连接面积增大,使得散热效率提高;寄生电感降低,使得功率损耗降低,并且非常利于模块化批量生产,在电动汽车的整流器中得到广泛应用。3.2 双面连接封装双面连接结构是将芯片分别与上、下基板连接,例如西门康公司提出的SKiN功率模块、富士电机提出的铜针互连SiC功率模块等,可以达到去除键合引线的目的。双面连接封装结构主要有两个优点:(1)消除发射极表面的引线键合,有效降低寄生电感,减小电压过冲和功率损耗,提高开关性能;(2)实现芯片上下两个方向散热,提高散热效率,有效降低芯片结温,从而减缓失效。美国橡树岭国家实验室提出了一种双面连接DBC基板封装的Si IGBT或SiC MOSFET功率模块,相比于传统的引线键合模块,其电感降低62%,开关损耗降低50%~90%,散热效率提高40%~50%。但双面连接结构也有一些缺点。第一,相比于引线键合模块,双面连接结构具有更多层材料,加大了封装工艺的复杂性。第二,各层材料的CTE不同,热失配会产生更大的热-机械应力,降低了连接层可靠性。为了降低热-机械应力,一些与芯片CTE匹配的金属,如Mo或Cu/Mo/Cu等被用作中介层材料。第三,在实现不同厚度的多芯片双面连接的功率模块时,如图5所示,需要可以在芯片和DBC基板之间电镀或连接不同高度的微型金属柱(Micro-Metal Post)或铜顶针(Cu Pin)等,解决多芯片厚度不同带来的高度差异问题。第四,锡基钎料是模块封装中最常用的互连材料,在双面连接模块封装过程中,通常需要多个连接步骤,这就需要一组具有不同熔点的钎料,限制了模块的服役温度。因此在双面连接封装结构中,具有高导热、高导电和高熔点的烧结银焊膏成为了互连材料的优先选择。图5 双面连接封装结构3.3 器件集成封装器件集成封装是在模块里集成多种功能的器件,例如集成门极驱动电路、去耦电容、温度传感器、电流传感器和保护电路等。器件集成封装具有很多优点,例如通过集成门极驱动电路和去耦电容,可以降低母排或模块外部接插件的寄生电感,缩短功率器件和门极驱动之间的连接,降低门极回路电感,实现抑制电磁干扰,提高均流性能和开关速度。但是该封装结构也存在一定的局限性,例如,集成的门极驱动电路一般比较简单,模块的整体尺寸、载流能力和开关频率受各集成器件的限制。此外,在器件集成封装之前,需要检验各器件的耐温性能,避免因为器件集成距离太近,影响温度敏感器件的正常工作。3.4 三维功率集成封装三维集成封装结构形式如图6所示,三维封装结构主要分为叠层型三维封装和埋置型三维封装,是在二维封装的基础上,采用引线键合、倒装芯片、微凸点、球珊阵列(Ball Grid Array,BGA)、硅通孔(Through Silicon Via,TSV)、PCB埋置等工艺技术,在垂直方向上实现多芯片的叠层互连。(a)叠层型封装:引线键合(b)叠层型封装:BGA焊球连接(c)叠层型封装:硅通孔连接(d)叠层型封装:芯片堆叠连接(e)叠层型封装:气相沉积晶圆连接(f)埋置型封装:PCB埋置式连接图6 三维集成封装结构形式示意图在叠层型三维封装中,硅通孔是最受关注的技术之一,是利用穿透衬底的硅通孔的垂直互连,实现不同芯片之间的电气互连。硅通孔封装关键技术包括硅通孔成形、填充、芯片减薄和互连等。具体步骤为:首先通过激光打孔、干法刻蚀或湿法刻蚀形成通孔,然后采用化学气相沉积等方法填充SiO2绝缘层和铜导电层,其次通过磨削加工减薄芯片,最后通过金属间键合或粘接等方法实现芯片互连。与传统平面二维引线互连结构相比,硅通孔三维结构具有尺寸小、重量轻、硅片使用效率高、缩短信号延迟同时降低功耗等优点,被广泛应用于三维晶圆级、系统级和集成电路封装中。但它也存在一定的局限性,第一是可靠性,硅通孔封装结构的功率密度高,叠层芯片的热管理问题较大;第二是成本高,封装结构、工艺和测试复杂。埋置型三维封装,是采用铜线和微孔代替键合引线,将芯片嵌入在PCB层压板中,可以缩小体积、提高可靠性,并且易于系统集成。此结构面临最大的挑战是热-机械性能较差,受限于传统PCB材料的低玻璃转化温度和高CTE带来的热-机械应力,其服役温度较低。此外,FR4-PCB层压板的剥离强度较低,约为0.9~1.25 N/mm,相比于DBC基板,PCB板嵌入式封装的模块可以承受的额定功率较低。除了上述焊接式连接之外,还可以通过压接形成三维封装,典型案例如图7所示,为西码(Westcode)IGBT压接模块内部结构图,各组件由外部施加的机械压力取代引线、钎焊或烧结形成物理连接,结构简单、成本较低、可靠性高,在高压大电流电网中得到了广泛应用。但是在压接模块中,对模块的内部尺寸、各组件的平整度和表面质量要求高,接头的导热和导电性能受压力大小和均匀性的影响很大,需要选择合适的合模压力来保证较小的接触电阻和接触热阻,但会不可避免地受到表面粗糙度和结构变形的影响。在压接结构中常引入CTE较小的弹性缓冲结构和材料,如Mo或Be垫片、弹簧片等,来均匀压力、降低热-机械应力,提高可靠性。(a)示意图(b)实物图图7 西玛的IGBT压接模块内部结构结束语功率电子封装的关键材料、连接技术和结构设计,逐渐向去除引线、提高散热性能、提高集成密度等方向发展,来满足高温、高压、高频环境的可靠应用。随着第三代半导体器件的推广应用,硅通孔技术、三维集成封装结构等是未来发展的主要趋势,相信其应用前景无限广阔。想了解更多关于半导体芯片和功率电子清洗的内容,请访问我们的“半导体芯片和功率电子清洗”产品与应用!合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 芯片清洗合明科技分享:关于芯片失效分析方法的讨论

    芯片清洗合明科技分享:关于芯片失效分析方法的讨论

    芯片清洗合明科技分享:关于芯片失效分析方法的讨论清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。作者:黄美莲(福州瑞芯微电子有限公司)摘要:主要通过实践经验总结了一种关于芯片失效分析流程和方法,用于应对集成电路研发、生产和使用过程中不可避免的失效问题的分析,满足用户对高品质、高可靠性产品的要求。通过对芯片失效的充分剖析,从简到繁、从表面破损到内部具体电路损坏,通用性强,分析逐步深入,在一定程度上可以节约分析成本,快捷有效地找到失效具体位置、失效原因以及预防措施。芯片失效分析对产品的生产和使用都具有重要的意义,失效可能发生在产品生命周期的各个环节,包括:芯片后期测试环节的损坏、整机研发设计、存储、运输、贴片、加工组装、客户端等。针对这些环节出现的次品、早期失效、使用后期失效等坏片进行确认失效后的功能影响、分析失效实质问题、明确失效原因最终得出应对策略,减少甚至避免失效的发生。主要方法包括:充分明确分析对象,外观检查,芯片拆卸、清洗植球,系统级测试平台测试,工程机测试,必要时进行 FA 分析,总结失效原因、预防及改善方法。本文主要针对芯片出货之后产生的失效芯片的分析。1 明确分析对象当失效芯片分析人员拿到失效样品,不要急于开始分析,在分析操作之前要先确认以下几点:确认客户寄出的样品是否有误,避免无效工作;对收到失效样品进行分类,一般按照芯片型号、批次区分并编号;进一步确认失效样品失效的环节,是生产、销售、使用哪个具体环节产生失效品,如:贴片、组装、功能测试、高低温可靠性试验、客户端使用等。确认客户反馈失效的具体数据,生产总数、不良率、不良品发生是否是批次行现象等。2 外观检查通过目测或者显微镜等观察仪器检查芯片的外观是否有破损,如LQFP封装芯片的PIN脚是否有断裂痕迹,BGA封装的芯片 PAD 或者基板是否有氧化损伤等。3 芯片拆卸和清洗如果客户寄回的是整机,需要用相对应的方法将待分析失效分析芯片从样机上拆下,如果是客户寄回的是已拆卸的芯片那就无需这一步骤,直接进行相应的处理。LQFP 封装:芯片拆下后表面会有残留锡渣,需要使用烙铁与吸锡线将芯片管脚与中间地清理,然后将芯片放在超声波清洗,使用液体有洗板水或是酒精。BGA 封装:芯片拆下后锡球会形成不规则或是缺失,需要使用植球台工具或是刮锡膏的方法进行植球。4 系统级测试平台测试系统级测试平台测试是芯片量产测试最后一道测试使用的测试平台,将芯片各个模块通过功能测试的方法全部覆盖测试,是最接近芯片使用功能的测试手段。系统级测试是确认该样品是否是出货后的失效的关键手段,因此,分析的第一步是确认该批次的芯片出货前测试用的测试硬件版本和软件版本,失效样品首先在系统级测试平台使用当时量产测试使用的硬件版本和软件版本测试,若软件后期有优化更新的也需要用最新的测试硬件版本和对应的软件版本再进一步测试,记录测试结果。若失效样品在系统级测试平台测试结果正确,但是客户反馈样品功能失效,说明量产的系统级测试无法筛出,存在测试逃逸,测试硬件或者软件需要优化或者客户误报。若失效样品在系统级测试平台的测试结果是错误的,根据错误的具体测试项和错误情况进分析芯片失效点,同时也可以判断这是芯片出货后的某个环节发生的失效。5 工程机测试模拟客户使用环境,软件运行电压频率、场景、温度等,在工程机或者客户相应样机上进行测试。根据客户反馈的异常现象,在工程机上重点测试该功能,当然其他功能要覆盖到,看是否可以复现客户反馈的现象,并根据出错模块排查芯片的故障。若无法复现客户问题,可能是客户误判,或者进一步和客户沟通看硬件环境是否有差异,或者出现的特定环境。6 封装失效分析封装失效分析行业通常缩写为 FA 分析,主要方法有:外观测试,O/S 、IV 曲线测试、X-RAY 扫描、SAT 扫描、Decap 测试、Fault测试、Cratering测试、HFdelay、EMMI测试、LC测试。外观检查主要内容,灰尘、沾污、管脚变色、PIN脚断裂、封装裂逢、基板变形等。O/S,OPEN/SHORT测试用以确认在器件测试时所有的信号脚与测试系统相应的通道在电性能上完成了连接,并且没有信号脚与其他信号引脚,电源或地发生短路。能够非常快捷查找芯片各引脚是否开短路,以及封装是否有 wire cross 问题;芯片出现 O/S 现象,没有意义再进行功能与其它参数测试。IV 曲线测试,针取不良 PIN ,施加电压-3V-3V,电流-1MA-1MA,测试 PIN 脚电否异常。X-RAY扫描,利用X射线透视技术可以不打开封装情况下,观察电子元器件内引线断裂、交叉,BGA 的焊点失效。SAT 扫描,超声波扫描显微镜,其主要是针对半导体器件,芯片,材料内部的失效分析。其可以检查到:a,材料内部的晶格结构,杂质颗粒夹杂物、沉淀物;b,内部裂纹;c,分层缺陷;d,空洞、气泡、空隙等。Decap 测试,开封,即开盖/开帽,指去除 ic 封胶,同时保持芯片功能的完整无损,保持die, ads,wires 不受损伤,为下一步芯片失效分析实验做准备。Fault 测试,开盖后去除绑定线,对晶圆进行 IV 曲线测试。Cratering 测试,弹坑测试去除绑定后检查。HF delay,氢氟酸实验,氢氟酸是氟化氢气体(HF)的水溶液,为无色透明有刺激性气味的发烟液体,利用氢氟酸腐蚀 pad 表面,看 pad 低层是否有烧伤痕迹。LC 液晶热点侦测,利用液晶感测到 IC 漏电处分子排列重组,在显微镜下呈现出不同于其它区域的斑状影像,找寻在实际分析中困扰设计人员的漏电区域(超过 10mA之故障点)。LC可侦测因 ESD,EOS 应力破坏导致芯片失效的具体位置。EMMI微光显微镜是一种效率极高的失效分错析工具,提供高灵敏度非破坏性的故障定位方式,可侦测和定位非常微弱的发光(可见光及近红外光),由此捕捉各种元件缺陷或异常所产生的漏电流可见光EMMI侦测对应故障种类涵盖ESD,Latchup,I/O Leakage,等所造成的异常。芯片有发现短路时,但封装FA分析未发现封装异常和烧伤点时通过专业失效分析公司采用 EMMI 与 LC 两种方法进行测试,但是费用相当高昂。对于故障分析而言,微光显微镜(Emission Microscope,EMMI)是一种相当有用且效率极高的分析工具。主要侦测 IC内部所放出光子。对漏电流的侦测可达微安级别。LC(液晶热点侦测 Liquid Crystal)对漏电流的侦测仅达毫安级别。7 范例分析(1)问题描述。客户反馈:RKxxx 在 Ambers 机种量产不良率高,不良数 50PCS,投产 115827PCS,不良率:0.04%。不良现象:抓不到 USB。①量測+VDD_CORE1.2V=1.9V;②確認電壓偏大于正常板;③交叉驗證確認料件本體 NG(2)原因分析。收到 5pcs 芯片,重新植球,外观目视检查未发现异常;SLT 平台与 SVB 平台双向对比测试结果如下:SVB:也称为”SDK,工程机测试平台”,运行系统,针对芯片的各个接口与功能进行测试。SLT:system Level Test ,用于工厂生产芯片测试的平台。失效芯片 4#、5#进一步分析:(3)分析总结。本次分析 RKxxx 5pcs,良品 3PCS,不良品2PCS。2pcs 失效芯片确认是 EOS 导致损坏。8 失效分析意义通过失效分析可以减少和预防产品同类失效事故的重复发生,提高产品质量和减少经济损失。失效分析是可靠性工程必不可少的工作,是全面质量管理中的重要组成部分和关键技术环节。失效分析是处理客诉纠纷、责任认定、法律纠纷(仲裁)的依据。失效分析事件的三要素:侦测、诊断、事后处理。失效分析人员的要求。由于失效分析在整个芯片的验证过程中非常重要,也比较复杂与特殊性,失效分析人员除要有扎的理论基础以外,还应不断地结合实践,逐步培养,并应具备以下基本素质:做个老实人,说个老实话,一切以真实为主,不作假;多动脑筋,用各种仪器与方法,用怀疑一切的态度把关捕捉失效的信息和证据;保持续头脑清醒,用正确的思路去寻找一切可能怀疑的问题;学习要认真,多向身边的同事学习。积极向上,寻找自己的不足之处;要有扎实的专业基础知识和较广的知识面,工作能力要强,办事效率要高。9 结语本文针对芯片失效分析的问题提出了分析手段与解决方法,通过对芯片失效的基本原理及各种失效形式的分析,提出了各种验证方法。探究了几种验证手段与分析方法的的实用性。随着科学技术的不断进步,我相信在未来的芯片失效分析工作中将会研究出更多的芯片失效的分析方式方法,提高芯片性能与使用寿命,促进集成电路的的发展。相信在不久的将来,基于实际的芯片失效分析一定会更加广泛地应用于芯片企业。文章来源: 半导体封装工程师之家想了解更多关于半导体芯片封装清洗的内容,请访问我们的“半导体芯片封装清洗”应用与产品。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗

  • 功率器件封装清洗合明科技分享:铝丝键合焊点颈部损伤研究

    功率器件封装清洗合明科技分享:铝丝键合焊点颈部损伤研究

    功率器件封装清洗合明科技分享:铝丝键合焊点颈部损伤研究清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。作者:胡惠明 黄赟 朱悦江苏长电科技股份有限公司摘 要:在铝丝键合中,要提高键合铝丝的拉力强度,最重要的一点就是减少第一焊点颈部的损伤。该文简述了铝丝键合的工艺过程,分析了在自动键合过程中造成第一键合点颈部损伤的主要原因:焊接参数设置不当会造成焊点过应力损伤;焊接顺序不合理会造成超声波作用后,焊点颈部损伤;键合劈刀沾污以及劈刀本身的设计结构也会对焊点造成一定的损伤;键合引线在拉弧度的过程中也会因摩擦受损;压爪或垫块未完全固定基岛,引起键合过程中焊点颈部损伤。引言铝丝键合就是将半导体芯片压焊区与框架引脚之间用铝丝连接起来的封装工艺技术。由于高纯铝丝导电性好、耐蚀性优、价钱便宜等优点,使铝丝键合成了功率器件封装广泛使用的技术之一。在实际生产中发现,第一焊点颈部的机械强度通常都是最弱的,这是由于在键合过程中,第一焊点颈部在键合和拉弧度时都会受到一定程度的损伤,因此,在键合中,要提高 Dage4000 拉力测试强度,最重要的就是提高第一焊点颈部的机械强度,减少第一焊点颈部损伤(如图 1、图 2 所示)。本文分析了键合工艺过程,指出了颈部损伤的产生根因,并提出了相应的解决措施。1 铝丝键合截面图劈刀端面如图 3 所示、工装件安装位置示意图如图 4 所示,铝丝从穿线管穿出,经过导线管嵌入劈刀端面中,键合时劈刀的端面压在铝丝上,键合过程中劈刀端面的前后边缘会直接作用在铝丝上,了解劈刀端面结构以及送线、拉线弧过程,有助于理解键合过程中劈刀对第一焊点颈部产生的影响。2 铝线键合的工艺介绍及焊接工艺过程铝丝键合又称为冷超声波压焊,即运用冷超声压焊技术,将芯片压焊区与框架管脚连接。冷超声压焊技术,是利用键合机台的换能器将电能转化为机械能。超声机械能通过劈刀使铝丝与焊接面摩擦,除去焊接表面的氧化层并使焊接面发生塑性形变,同时互相扩散,形成良好的分子键合完成铝丝和焊接面的焊接。焊接所用铝丝通常为高纯度铝,达到 99.99%的纯度,参加少量的微量元素,如加入镁,会增加强度和硬度,同时也会提高抗腐蚀性能。如按铝线线径划分,可分为粗铝线和细铝线,通常线径在φ100 以下的称为细铝线,而大于等于 φ100 的铝线称为粗铝线,本文主要以粗铝线为研究方向。焊接所用的工具通常称为 bondingtool,一般称为劈刀,也是特制的,其主要成分为碳化钨钢,精度要求为2μm,不同线径的铝丝,需要使用不同规格的劈刀。除了主要焊接工具外,还要有配套的辅助工具,如导线管(wire guide),穿线管(tube)以及切断粗铝线的特制切刀(cutter)。整个焊接过程(如图 5 所示)可分为六个主要步骤,如下:步骤一:焊头降低使劈刀端面铝丝与芯片压焊区表面接触,进行第一焊点键合;步骤二:线夹打开,焊头上升,使劈刀上升至线弧最高点;步骤三:焊头沿水平方向移动,使劈刀到达管脚压焊区上方;步骤四:焊头降低,使劈刀端面铝线与管脚压焊区表面进行接触,此时线夹关闭,进行键合;步骤五:键合完第二焊点后,切刀切尾丝,同时线夹向后移动,扯断尾丝;步骤六:焊头上升,使劈刀离开第二焊点表面。线夹向前移动,从劈刀端面送出一段铝丝,线夹闭合。上述过程完成后,键合完一根焊线。3 铝丝键合中第一焊点颈部损伤3.1 焊线顺序不当造成第一焊点颈部损伤在键合制程中如果粗、细焊线焊接顺序设置不当会导致第一焊点颈部损伤,MOS产品布线如图 6 所示,该批 为 MOS 管,G 极 键 合 φ125μm 铝 丝 ,S 极 键 合φ380μm 铝丝,键合时分两台机、两次操作,先键合 G极(焊线 1)再键合 S极(焊线 2)。当键合完 G极细铝丝时全检未发现异常,但键合完 S 极粗铝丝时,却发现 G 极细铝丝第一焊点颈部产生隐裂,经研究发现键合 S极粗铝丝时因较大的超声波震动引起 G 极细铝线第一焊点颈部隐裂,如图 7 所示。3.2 劈刀沾污或磨损引起第一焊点颈部损伤从成本方面考虑铝丝键合劈刀(如图 8 所示)通常会清洗后重复使用,因此劈刀端面会存在一定的铝屑沾污(如图 9 所示)以及端面磨损,而键合过程中铝丝与劈刀端部直接接触(如图 10 所示),会受劈刀端部挤压、刮擦,属应力集中区域,如劈刀端面有沾污或者较严重的磨损,会导致键合点颈部受到损伤,在温度循环时容易受到循环应力的影响并出现裂纹。3.3 焊接参数设置不当引起第一焊点颈部损伤焊接参数,主要是焊接时超声功率,作用于劈刀并施加到铝丝的压力和焊接作用时间。试验表面,单纯增加焊接功率以及焊接时间,可以提高焊接结合能力,但由于在第一焊点键合时,劈刀沿铝线方向前后震动,摩擦挤压端面下的铝线(如图 11 所示),使铝线与芯片压焊区形成物理键合,焊接效果如图 12 所示。与此同时,劈刀端面后缘也摩擦第一焊点颈部,使其产生形变而导致颈部损伤。而焊接压力是保证焊接时,促进金属间的相对扩散,在较大的压力下,由于没有充分的变形,反而不容易焊接,太小的压力,会导致劈刀过度地震动,如同增加焊接功率,也会导致过应力后焊点颈部损伤产生裂纹。3.4 拉线弧时产生第一焊点颈部损伤当劈刀到达设定的弧高时,劈刀向第二焊点上方水平移动,劈刀在移动过程中,铝线被持续拉出。由于劈刀端部拉出的铝线存在一定的角度,铝线与劈刀端面边缘会产生一定的摩擦力,随着劈刀的水平方向移动,劈刀端面与铝线之间的夹角也越来越大,拉线的阻力逐渐较小,但是劈刀的水平移动比竖直移动要快得多,导致拉线的阻力增加,引起第一焊点根部拉伤。3.5 工夹具安装不当或磨损引起第一焊点颈部损伤因为铝线焊接为冷超声波焊接,在焊接过程中是没有温度的,在焊接过程中稳定住基岛和管脚十分必要。因此,对于工夹具的安装、调试要求比较严格,稍有不当就会导致焊点损伤、虚焊、焊点变形不良等问题产生,通常情况下 M7200 键合机台,如框架厚度为 20mil,要求压爪(如图 13 所示)顶尖碰到框架后,压爪要过压 12~18mil,如线径越大,需要压得越紧。当没有框架时,压爪刚好碰到垫块(如图 14 所示)表面,此时往后推垫块,应该能顺利推出压爪。而实际作业过程中,因压爪会受到较大的压力和摩擦,会导致磨损比较严重,从而导致焊点损伤以及焊点变形不良等异常。同理,垫块垫在框架下部,起到稳定框架的作用,也会存在磨损的现象。4 如何减少第一焊点颈部损伤4.1 控制焊接顺序不当造成的第一焊点颈部损伤(1)产品部完善布线图的设计规则,对于粗铝线混打的产品,遵循先焊接粗线再焊接细线的原则,避免粗线焊接时过大的超声波震动引起细线焊点颈部损伤。(2)规定键合操作员及 QC关卡在自检时必须有 1 条产品在 60 倍以上的显微镜下进行,并关注隐裂的问题。4.2 控制键合劈刀沾污、磨损引起的第一焊点损伤(1)提高劈刀的清洗频率,将原先劈刀的清洗频率由4 万点更换清洗,改为线径≥φ150μm劈刀满 3 万点更换清洗,线径<φ150μm劈刀满 2 万点更换清洗。(2)清洗后的劈刀由技术人员负责,在显微镜下检查确认后方可使用。(3)对劈刀进行寿命管控,达到 120 万点时作强制性报废处理。(4)后续优化劈刀的清洗方法,增加清洗后压缩气吹劈刀端面的步骤,此方法可以减少劈刀端面的残留物。4.3 改善拉线弧过程中第一焊点颈部的损伤(1)尽量选择劈刀端面后缘光滑且倒角半径大的劈刀,可以减少拉线弧过程中劈刀对焊线的损伤。(2)在设置线弧参数时,尽量不设置逆向弧度参数(Step FwdAgle)或尽可能减少逆向弧度参数,这样可以减少铝线被折的角度,从而达到减少第一焊点颈部损伤的目的。4.4 改善工夹具安装不当引起第一焊点损伤(1)工夹具进行寿命管控,由维修领班定期检查工夹具状况。(2)制定工夹具安装、调试规范,规定使用塞尺检查压爪与垫块之间的间隙。(3)操作员首检或机台调试后检查压爪印(如图 15 所示),要求压爪印位置与深浅都要符合工艺规范,否则通知维修人员进行调试。(4)对于 TO- 252(4R)产品,分两个头生产,其中一个头生产 1、3 排,另外一个头生产 2、4 排,这样可以提高 UPH且调准两排一样的高度比四排一样的高度要容易许多。(5)对于压爪,M7200 需要新旧混用,否则新旧压爪高度不一致,调试起来困难较大,很难高度一致。4.5 优化工艺参数减少第一焊点颈部损伤焊接参数的优化对于改善第一焊点颈部损伤有积极的意义,实际上采用 DOE 试验的方法,可以事半功倍地解决问题。具体改善步骤如下:(1)试验准备:本文以φ250μmSPM铝线为例,键合机台选用 OE7200,劈刀使用 OE 原厂劈刀 153- 10- B。(2)经研究,先确定对焊点损伤影响较大的因子:Start Force/Bond Force/Start Power/Bond Power,并找到大体的参数范围,这个范围首先必须保证没有颈部裂纹的产生,然后在此基础上提高焊接强度。试验因子水平如表 1所示。(3)响应变量的选择判断一个焊点是否满足质量的要求通常进行破坏性试验来获得焊点的强度,通常的拉力测试方法称为 WirePull,有时也参考推力试验,即 Bond Shear。此外,对于直接作用在芯片表面的焊点来说,还需要考虑是否有弹坑。(4)具体优化后的参数水平组合如表 2 所示。4.6 其他改善框架压焊区质量也可以减少第一焊点颈部损伤,因为压焊区质量改善后,可以使用较小的参数来满足焊接条件,小的参数可以有效防止第一焊点颈部裂纹、损伤。另外,使用较软的铝线也会达到同样的效果,较软的铝线会有较好的延展性且可以减小焊接参数,最终达到减少第一焊点颈部应力的效果。5 结论提高键合铝丝的拉力强度,除了需注意焊点的变形与焊点结合的情况外,还要控制焊点颈部损伤的发生。在焊点变形良好且焊点与压焊区之间结合正常的前提下,在铝丝键合中减少焊点颈部的损伤显得尤为重要。文章来源: 半导体封装工程师之家想了解更多关于半导体芯片和功率电子清洗的内容,请访问我们的“半导体芯片和功率电子清洗”产品与应用!以上便是功率器件封装清洗合明科技分享:铝丝键合焊点颈部损伤研究一文,希望可以帮到您!针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。

  • 半导体封装清洗合明科技分享:微电子封装用主流键合铜丝半导体封装技术

    半导体封装清洗合明科技分享:微电子封装用主流键合铜丝半导体封装技术

    半导体封装清洗合明科技分享:微电子封装用主流键合铜丝半导体封装技术清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。作者:雒继军(佛山市蓝箭电子股份有限公司)摘要:微电子工业对于产品可靠性和材料成本的需求促使键合铜丝取代金丝成为半导体封装时应用的主流材料,在设备和技术工艺优化发展的前提下,键合铜丝技术由DIP等低端产品推广至QFN、小间距焊盘等高端产品领域,这也提升了半导体封装企业对铜丝性能和键合工艺的要求。本文对键合铜丝的性能优势与主要应用问题进行了论述,结合应用现状从使用微量元素、涂抹绝缘材料、优化超声工艺、改进火花放电工艺等几个方面提出了改善主流键合铜丝半导体封装技术应用效果的具体措施,以为相关生产单位提供参考指引。引言半导体封装技术的主要工序为晶圆划片切割、芯片贴装、引线键合以及后面的塑封、成型、测试等。其中,引线键合主要利用金、铝、铜、锡等金属导线建立引线与半导体内部芯片之间的联系,引线键合能够将金属布焊区或微电子封装 I/O 引线等与半导体芯片焊区连接,是半导体封装工艺的重要工序环节,其施工质量对于半导体功能应用的发挥具有较大影响。相对于金丝而言,键合铜丝具有更低的生产成本和良好的导电性能,使其在半导体封装以及集成电路、LED 等众多领域得到推广应用。1 键合铜丝的应用优势分析在材料成本方面,金丝是铜丝材料价值的 60~70 倍,随着微电子行业的发展,半导体封装时的封装密度持续提升且键合线直径持续降低,100 个引出端、3mm 键合金丝长度的高级封装通常需耗费约 0.8 美元的封装成本,线焊成为影响成本的重要因素,相关对比结果详见表 1。在 MRP、OP2、EFP 等众多工艺的作用下,铜丝坚实展现出更低成本的同时也凸显出更加稳定、牢固的性能,这为键合铜丝的推广应用奠定了基础。在电学性能方面,铜丝的电导率约为金丝的 1.33 倍,能够在高密度半导体封装器件中以更低的直径尺寸承载更多电流,满足半导体期间的运行需求。在热学性能方面,铜丝具有比金、铝等材料更高的热传导系数,而且在热膨胀性能方面铜的热膨胀系数更低,在高密度半导体器件中能够具有更良好的散热性能和热稳定性能。在机械性能方面,铜的硬度更高,键合铜丝无论是伸长率还是破断力都优于金丝,不仅对机械应力的抵抗力更强,在规避塌陷问题、提升成弧性和一致性方面更具优势,能够有效提升所封装半导体的性能可靠性。2 键合铜丝应用期间的主要问题分析■ 2.1 铜线氧化问题相对而言,铜丝比金丝更容易氧化,在铜丝表面氧化反应的影响下,铜丝键合期间形成的自由空气小球将产生形状与尺寸的改变,导致操作人员难以有效控制键合力,导致焊盘形变量超出标准范围,影响半导体封装成品率。■ 2.2 铜丝硬度大,超声能量或键合力难以控制为解决铜丝硬度大带来的键合难度,半导体封装企业通常选择应用超声工艺或键合压力工艺提升键合效果,这也导致焊接期间需要耗费更多的时间完成键合工作。在键合期间,如果操作人员对超声能力或压力控制不到位,将导致硅衬底在焊盘下方出现弹坑等破损情况,随着作用力的增加,铜丝的第二焊点存在更低的可靠性,良品率相对较低。在键合压力或超声能量的作用下,铜线键合期间更容易出现铝从焊盘挤出的情况,这与键合时间过长有关,为利用更高的键合强度实现对高强度铜丝的键合处理,焊盘将长时间承受超声功率或键合压力影响,最终引发该情况,详见图 1。此外,在热超声焊接过程中,如果操作人员对作用力和能量控制不到位不仅会影响焊接效果,还会导致基板下方氧化层受损,引发电解质泄漏失效等问题。3 键合铜丝半导体封装优化措施分析■ 3.1 添加微量元素改善铜丝性能如前文所述,铜丝的氧化性对于半导体封装成品率具有较大影响,为改善键合铜丝性能,相关生产单位可以利用碱土元素作为脱氧剂,常用的元素主要包括 Sr、Ca、Mg 以及 Be。其中,Mg 能够作为一种强脱氧剂改善铜丝的氧化性能,有效减少铜丝中氧化铁或氧化亚铜的含量,铜镁融合应用生产的键合铜合金能够在焊接高温的影响下维持优异的抗氧化性,有效规避铜球不良问题;Ca 元素的应用能有效改善铜丝材料的抗氧化性、高温塑性、封装性能以及力学性能,Sr 元素的应用则可以通过增强表面致密性与晶界完整性的方式使抗氧原子深入铜丝内部,强化键合铜丝的抗氧化能力,避免在铜丝熔球期间出现不稳定情况。过渡元素的应用也能够有效改善键合铜丝的性能,如提升抗氧化、抗腐蚀性能的 Ru 元素,改善焊接效果和抗氧化性能的 Nb 元素,提升铜丝高温塑性、规避杂质危害、细化晶粒、改善铜丝结晶温度的 Zr 元素,降低铜丝硬度并细化晶粒以改善铜丝键合性能的 Ti 元素,相关生产单位需要结合实际需求选择微量元素添加比例,有效改善键合铜丝性能,增强半导体封装质量。■ 3.2 使用绝缘涂层改善封装效果虽然金、银、铂等贵金属材料以及镍、钴、钛等抗腐蚀材料作为涂层能够有效改善键合铜丝的抗氧化、抗腐蚀等性能,考虑到键合铜丝本身直径相对较低,应用金属涂层的成本相对难以接受,因此生产单位可以选择应用种类繁多且价格低廉的绝缘材料作为键合铜丝的涂层改善其键合效果。在相关研究成果中,某专利通过 5~60nm 的有机涂层涂抹于键合铜丝表面,最终形成能够在长期运输存储中维持较强的抗氧化能力,同时也可以在 200℃以上的高温中维持涂层的稳定性;某专利通过聚合物绝缘涂层防止键合铜丝氧化问题,在焊接高温的影响下涂层材料还能够自动分解,避免对铜丝与其他部件的导通行产生影响,有效提升了半导体封装质量。在绝缘涂层应用期间,生产单位需要充分考虑绝缘涂层的耐高温性能,相关研究指出,绝缘涂层虽然在键合期间不易出现分解反应,但容易在铜丝熔球期间出现碳化情况,导致键合铜丝的输送与键合受到影响,而且绝缘涂层还存在结合性差、易剥离等问题,需相关生产单位进行优化改进。■ 3.3 超声的工艺优化超声设备是确保铜丝键合工艺顺利开展的关键设备,主要包括聚能器、换能器以及发生器几个部分。其中,换能器是超声设备的核心部件,起到将电能转化为机械能的作用,能够从振幅和轨迹两方面实现对键合工具的调整;聚能器与键合工具则起到放大和传递超声能量的作用,对于系统谐振频率具有直接影响。铜丝键合常用的超声设备通常为双向垂直超声系统,通过将压电陶瓷装设于双向垂直杆部位,控制系统产生两种不同的振动频率并形成两种轨迹,研究发现,方形与圆形的轨迹相对线形轨迹能够展现出更高的焊接强度、焊接变形量和焊接升温效果。铜丝键合期间的球焊需要同时利用超声、压力以及热能三种能量,弹坑失效模式通常与超声波震动存在关联。相关研究发现,超声键合的效果主要与超声软化以及摩擦有关,对超声工艺的优化也可以从这两点入手。其中,超声软化的具体现象为超声能量作用于铜丝等金属材料并将其硬度与强度降低,Langenecker 研究发现,铜丝晶体中存在的位错优先选择将声能吸收,从钉扎位置开动位错,最终起到强化铜丝塑性,促使铜丝在更低压力的作用下产生变形情况,这种情况下的存在对于改善键合铜丝性能具有积极意义,能够进一步缩短其与金丝材料的差距。在针对键合铜丝的研究中发现,铜丝的热超声键合条件之一是强化基板接触面与铜球之间的摩擦力,由此可以确认摩擦的铜丝键合的关键点之一。铜丝键合期间在基板上的遗留痕迹形状主要为环状,这与弹性接触理论相贴合,证明在压力相同的情况下,超声功率的提升能够缩减圆环内径,使得原有的细微摩擦状态转化为相对滑动状态。为此,在键合工艺优化时,生产单位需要积极探寻超声能量与压力两者的契合点,实现对铜丝键合期间摩擦力的有效改善,持续增强铜丝键合质量,提升半导体封装良品率。■ 3.4 火花放电的工艺优化火花放电工艺对于铜球引线键合期间引线球的形成具有重要作用,第二点楔键合完成后,在电弧放电的作用下能够熔化尾线,并在温度梯度、表面张力以及自重的影响下形成铜球。铜丝尾线的长度与第二键合的质量存在关联,下一个第一点键合的质量将受到上一个第二点键合质量的直接影响,第一键合点的尺寸也与引线、熔球两者的直径比存在较大关联,在始终应用铜丝作为键合引线的情况下,熔球直径与火花放电的距离、时间、电流大小存在直接关联,而且时间和电流大小的影响更大,通常需要以 ms 级精度控制放电时间,以 10mA 级精度控制放电电流大小,以此来规避熔球直径存在的误差问题。当铜丝在键合焊接期间形成铜球时,火花放电的温度较高,铜球急速膨胀并达到真空气氛状态,在与大气快速混合的同时也导致铜球的氧化变形概率更高。相对而言,铜球氧化后将展现出更加坚硬的质地,导致焊接的难度进一步增加,容易因此出现较大的焊接误差。针对这一问题,操作人员可以利用 5% 氢气与 95% 氮气的混合气体进行防氧化保护,通过在 EPO 烧球点与芯片加热区喷放保护气体,起到防护作用,具体应用情况详见图 2。通过测试发现,氮氢混合气体的防护使得键合期间形成的铜球相对无防护环境下的铜球具有更均匀的形状和光滑的表面,构建的线弧也更加流畅、光滑,结果表明了保护气体对火花放电工艺的改善效果。保护气体流量的大小对于铜球形状具有较大影响,铜线键合期间的气体流量通常控制在每分钟 0.7~1L 左右。不同流量下的铜球形状存在差异,大流量会导致偏头问题出现,小流量将导致尖头问题,而中流量的形状更加优异,在实际操作时,生产单位需要通过现场测试决定保护气体的流量大小,具体可以参看铜球氧化颜色的变化情况以及焊接铜球的形状等对流量进行调整。研究发现,火花放电电极与铜丝端部的间距对于电流大小和铜球成形效果具有较大影响,随着间距的缩小,铜球将趋于稳定的圆球形,但硬度也会产生一定幅度的提升,不同键合铜丝的火花放电电流详见表 2。4 结语综上所述,铜丝相对金丝、铝丝等材料在成本、导电性、热学性能以及机械性能等各方面更具优势,更能够适应微电子工业的发展趋势,符合半导体产品的封装需求。在键合铜丝应用过程中,相关单位需要充分考虑铜丝易氧化以及硬度大等问题对键合质量的影响,积极采取涂抹绝缘涂层、添加微量碱土、过渡元素等方式改善铜丝的抗氧化相关性能,同时也需要积极优化超声、打火、保护气流量等相关工艺,不断提升半导体封装质量。文章来源: 半导体封装工程师之家想了解更多关于半导体芯片封装清洗的内容,请访问我们的“半导体芯片封装清洗”应用与产品。以上便是半导体封装清洗合明科技分享:微电子封装用主流键合铜丝半导体封装技术,希望可以帮到您!合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

上门试样申请 136-9170-9838 top