-
芯片清洗合明科技分享:先进封装挑战越来越大
芯片清洗合明科技分享:先进封装挑战越来越大清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。本文转载自半导体行业观察,内容编译自semiengineering,谢谢。随着芯片和封装尺寸的缩小,先进的封装挑战也越来越大。凸块(Bumps)是许多高级封装中的关键组件,但在纳米级确保所有这些凸块高度一致是一项日益严峻的挑战。如果没有共面性(co-planarity,),表面可能无法正确粘附。如果在封装中没有发现问题,这可能会降低产量,或者会导致现场出现可靠性问题。识别这些问题需要各种工艺步骤,包括各种类型的检查和计量,并且凸块越密集和越小,这些工艺就变得越密集和耗时。“随着裸片内的 I/O 间距不断减小,每个裸片所需的凸块数量会增加。此外,凸块尺寸还在继续减小,” Amkor晶圆服务副总裁 Doug Scott 说。“在某些情况下,每个芯片可能有超过 5,000 个凸点。这要求每个凸块具有相同的尺寸和形状,以确保下游正确组装。一个缺失的凸块或畸形的凸块将导致组装失败和产量损失。”还有其他挑战,特别是当这些封装中包含的芯片变得更加异构时。Amkor 高级封装开发和集成副总裁 Mike Kelly 表示:“新节点的总功率通常仍在上升,这促使客户采用混合凸块间距和凸块直径进行芯片设计。” “这需要更高端的电镀工具和通常更慢的电镀时间,并且有动力将成本影响降至最低。我们的客户最关心的是总电流,这主要是一个电迁移问题,但它也是将电流更精细的网格输送到新的硅节点——尤其是 3nm,但也从 5nm 开始。这意味着在更细的间距上有更多的凸块,当凸块间距和凸块直径在芯片上发生变化时,可能会面临更多的电镀挑战。”1. 结构凸块是简单的焊球,直径通常在 75μm 到 200μm 之间。它们可以通过电镀或直接放置形成。“这两种工艺都得到了很好的理解,得到了很好的优化,并且在大批量制造中取得了成功,”斯科特说。“也可以使用丝网印刷制作焊点,但存在良率/焊料空洞问题。凸块芯片和基板/末端 PCB 之间的适当设计可以显着减少故障点。”凸块是在倒装芯片工艺中植入 IC 上的——从技术上讲,是受控崩溃芯片连接或 C4。一旦在晶片上制造了芯片,就会在其顶部放置一个金属化焊盘并连接凸块。然后,将芯片切块并翻转过来。图 1:凸块工艺必须控制的参数包括高度、共面性、位置、尺寸和形状。资料来源:CyberOptics理想情况下,凸块与其他组件上的连接器完美对齐。这是经常发生问题的地方,要么是由于凸块本身的缺陷,要么是由于基板翘曲导致凸块无法正确对齐。“小芯片之间的互连依赖于焊料厚度小于 10 μm的微凸块,” Ansys半导体部门产品营销总监 Marc Swinnen 说。“微凸块的焊料量大约比传统的倒装芯片接头小两个数量级。这意味着即使插入基板的轻微弯曲或翘曲也会带来重大的可靠性风险。此外,这些微凸块被要求共同承载数百瓦的功率。任何局部过热都可能导致这些微小结构的热失效。”“您有各种各样的材料、不同的基材,而且它们都有不同的热膨胀系数,”布鲁克纳米表面与计量公司应用和产品管理总监 Frank Chen 说 。“当你有这些不匹配时,有些东西会比其他东西冷却得更快,你会得到很多无法完全消除的翘曲和应力。现实情况是,很难获得平坦的表面。”在许多情况下,这种翘曲非常小,甚至需要特殊设备才能检测到。“真正挑战人们的是三种主要类型的凹凸缺陷——桥接、非湿和空洞,”Chen 说。“但也存在计量类型的问题,例如芯片放置错误,包括芯片移位和旋转。与芯片贴装相关的另一个问题是压力。典型的过程是施加压力和热量来连接芯片,但由于压力或热量分布不均匀,您可能会出现一些倾斜或翘曲。”空隙会使焊接连接界面看起来像瑞士奶酪,是热和电源问题的根源。Palomar Technologies 的应用工程师 Anders Schmidt 说:“众所周知,空隙是非常差的热导体,会干扰热量从组件中传递出去。” “由于组件不能很好地散热,其载流能力下降,导致功率利用效率低下。”图 2:Swiss-cheese般的空隙会导致许多问题,包括导热性差。资料来源:Palomar Technologies最坏的情况是,空隙会导致芯片开裂。根据 Palomar 的说法,解决方案是使用共晶键合,其中熔点低于每种单独材料的熔点。这可以使用中间金属层来实现。“在键合过程中,但在设备运行期间,熔点非常低,这是共晶键合的关键属性之一,”施密特说。因为焊料凸点是金属,它们也有助于散热。“可靠的焊料将与封装配合使用,以消散内部产生的热量,在工作温度下保持长期功能,并承受环境条件或电源循环引起的冲击。”2. 不断发展的材料凸块设计随着组件的缩小而变得流行,因为它们可以在与引线键合相同的空间内实现更多的 I/O 连接,同时还降低了热阻和电感。最初,凸块由锡铅 (SnPb) 合金制成。为了与当前的环境问题保持一致,它们现在更多地由锡-银-铜(SnAgCu 或 SAC)合金制成。鉴于单个组件上可能有数千个凸起,该转换对环境审计具有重要意义,因为材料审计可以降至原子级别。西门子数字工业软件公司电子和半导体战略副总裁艾伦·波特(Alan Porter)说:“如果你的产品含有不同的材料,每一种材料都可能含有一个铅原子,当你把这些材料聚合在一起时,在某种程度上,铅就会变得可测量和重要。”目前,有来自不同供应商的许多凸块和基板配置,所有这些都旨在优化电气连接以获得更好的性能。底部填充材料的进步、倒装芯片中的电绝缘粘合剂层(不要与“底部填充” 混淆)也在提高效率。在众多选择中,有纯铜“微凸块”,直径在 20 μm 到 25 μm 之间,与较大的凸块相比,它具有与凸块相比引线键合的相同优势。随着间距越来越小,从十多年前开始,许多制造商开始使用“C2 凸块”,这是一种顶部有锡银 (SnAg) 触点的柱状微凸块结构。这些 SnAg 尖端提供了可靠性优势。但是成分的细微差异会影响颠簸的行为。根据Fisher Instruments的说法,“银含量超过 3% 的焊料凸块在热疲劳测试中表现更好,并且更能抵抗剪切塑性变形,而银含量较低(约 1%)的合金表现出优异的延展性,因此具有更好的抗疲劳性在严重的应变条件下。此外,仅 0.5% 的铜就可以降低基板铜的溶解行为,从而提高可焊性。”这里的基本制造挑战之一是保持材料成分的适当平衡。这为多年来一直处于观望状态的 X 射线检测创造了重要机会。X 射线可用于确定材料成分,例如互连中的合金或凸块中的污染物。此外,它可以帮助识别结构缺陷。X 射线检测的缺点是速度快,通常与光学检测相结合。但随着兴趣的增长,这项技术的速度有了显着提高。“一个有空隙的凸起不会像一个实心球体那样吸收那么多的 X 射线,”Chen 解释说。“因为里面有一个洞,空气并没有真正衰减 X 射线。在它是一个实心球体的情况下,你会得到更多的吸收。当你看着相机,之后你会看到有一个黑点,因为它吸收了所有的 X 射线,所以你看不到那里的光——与那个有洞的地方相比,你看到的更多。它不是完全透明的,但看起来有点轻。因此,我们正在查看图像对比度和吸收的差异,然后比较已知的好和已知的坏,看看哪个是坏的。”3. 工艺步骤当前对更小处理器、更小尺寸的更多 I/O 和更小封装的需求也促使 OSAT 重新考虑工艺顺序。CyberOptics的计算机视觉工程经理 John Hoffman 表示:“曾经严格的后端流程(例如包装)现在正更多地转移到前端。“业界倾向于将这些流程称为中间流程,尤其是当晶圆厂或封装厂执行这些步骤时。由于最终产品的可靠性取决于凸块的精确对齐,因此必须提前进行检查,这迫使进一步调整。“这需要以某种方式制备样品,”陈说。“而且这些测试协议需要时间来设计。”其他人同意。“如今,在后端/包装检测方面,我们在检测和组装过程之间没有明确的关联,” KLA ICOS 部门的产品营销经理 Olivier Dupont 在最近的一次采访中说。“这是一个需要建设的未来发展领域。正如许多人所观察到的,先进封装的增长仍在继续。它必须投资于这种发展。”4. 缩放随着芯片和封装的尺寸不断缩小,凸块技术正在被混合键合所取代。今天,生产中最小的间距和直径约为 20 µm 间距和 10 µm 直径。Onto Innovation应用工程经理 Woo Young Han 表示:“一些客户试图在 20 μm间距、10 μm直径之后进行混合键合,其中一些客户尝试在 5 μm直径、10 μm间距之后转向混合键合。这就是我们今天的局限。任何比这更小的都将是直接的铜对铜表面键合。”一个值得关注的领域是晶圆边缘。“几纳米的表面滚降可能会破坏晶圆间的混合键合,”韩说。“我们的很多客户都希望对晶圆边缘的不完整芯片进行检查。虽然它不会被使用,但部分裸片上的任何缺陷都会破坏整个过程。因此,许多检测公司都在研究深度学习或基于人工智能的方法来检测部分模具。”GlobalFoundries的工厂后道主管 Jean Trewhella 表示,虽然这些问题通常是人们最关心的问题,但在微柱凸块的制造过程中还有另一个不太为人所知的问题。“制造微柱并不是最大的挑战,”她说。“相反,当你尝试测试它们或将它们连接到其他东西时,不会获得任何额外的外来材料。这与我们进行碰撞的洁净室不同。”此外,测试本身有时会造成损坏。“我们必须亲身接触那个凸起或球,因此我们必须确保我们使用的 Pogo pin 技术不会造成太大的破坏,”Amkor 的 Harris 说。“此外,我们必须确保我们的环境是干净的。如果您在一个球和脏电源之间有连接,您通常需要在测试时增加电压或电流以满足特定水平。这条路上有阻力。如果那是碳类材料,它可能会燃烧并损坏插座,从而损坏设备。”5.结论Amkor 的 Scott 乐观地认为这些问题可以得到解决。“随着凸块间距的减小,需要新的光刻胶材料和曝光设备,”他说。“我们需要继续投资于更好的设备和材料,以及增加统计过程控制和计量。此外,了解最终应用要求以确保设计适合满足使用寿命要求也非常重要。”他并不是唯一一个乐观的人。“考虑到支柱的数量和其他所有因素,当您将所有这些概率叠加在一起时,PPM 不再罕见,”GlobalFoundries 公司的 Post Fab 测试开发中心研究员 John Carulli 说。“当我与整个链条上的各个同行进行基准测试和交谈时,这些都是问题。目前没有很多解决方案。但是很多聪明的人正在做很多很好的工作来解决这个问题。”解决这些问题可能会带来巨大的好处和机会。Promex Industries 的工程副总裁 Chip Greely 说:“更高的产量意味着更低的成本,更一致的设备在时间/超时时间内做同样的事情,因此成本应该会下降。”电路板上的污染物有多种,可归纳为离子型和非离子型两大类。离子型污染物接触到环境中的湿气,通电后发生电化学迁移,形成树枝状结构体,造成低电阻通路,破坏了电路板功能。非离子型污染物可穿透PC B 的绝缘层,在PCB板表层下生长枝晶。除了离子型和非离子型污染物,还有粒状污染物,例如焊料球、焊料槽内的浮点、灰尘、尘埃等,这些污染物会导致焊点质量降低、焊接时焊点拉尖、产生气孔、短路等等多种不良现象。这么多污染物,到底哪些才是最备受关注的呢?助焊剂或锡膏普遍应用于回流焊和波峰焊工艺中,它们主要由溶剂、润湿剂、树脂、缓蚀剂和活化剂等多种成分,焊后必然存在热改性生成物,这些物质在所有污染物中的占据主导,从产品失效情况来而言,焊后残余物是影响产品质量最主要的影响因素,离子型残留物易引起电迁移使绝缘电阻下降,松香树脂残留物易吸附灰尘或杂质引发接触电阻增大,严重者导致开路失效,因此焊后必须进行严格的清洗,才能保障电路板的质量。 针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。想了解更多关于SIP系统级芯片封装清洗的内容,请访问我们的“SIP系统级芯片封装清洗”应用与产品
-
如何清洁电路板,PCB在生产和应用过程中失效分析技术详谈
如何清洁电路板,PCB在生产和应用过程中失效分析技术详谈清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。现在很多PCB板子上都会有光电元器件,那么你知道他们失效的一些原因吗?PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。随着电子信息产品的小型化以及无铅无卤化的环保要求,PCB也向高密度高Tg以及环保的方向发展。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题,并因此引发了许多的质量纠纷。为了弄清楚失效的原因以便找到解决问题的办法和分清责任,必须对所发生的失效案例进行失效分析。欢迎点击了解更多“PCBA线路板清洗剂产品” 一、 失效分析技术 1.1 光学显微镜 光学显微镜主要用于PCB的外观检查,寻找失效的部位和相关的物证,初步判断PCB的失效模式。外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。 1.2 X射线 (X-ray) 对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X射线透视系统来检查。X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。 1.3 切片分析 切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得PCB横截面结构的过程。通过切片分析可以得到反映PCB(通孔、镀层等)质量的微观结构的丰富信息,为下一步的质量改进提供很好的依据。但是该方法是破坏性的,一旦进行了切片,样品就必然遭到破坏。 1.4 扫描声学显微镜 目前用于电子封装或组装分析的主要是C模式的超声扫描声学显微镜,它是利用高频超声波在材料不连续界面上反射产生的振幅及位相与极性变化来成像,其扫描方式是沿着Z轴扫描X-Y平面的信息。因此,扫描声学显微镜可以用来检测元器件、材料以及PCB与PCBA内部的各种缺陷,包括裂纹、分层、夹杂物以及空洞等。如果扫描声学的频率宽度足够的话,还可以直接检测到焊点的内部缺陷。 典型的扫描声学的图像是以红色的警示色表示缺陷的存在,由于大量塑料封装的元器件使用在SMT工艺中,由有铅转换成无铅工艺的过程中,大量的潮湿回流敏感问题产生,即吸湿的塑封器件会在更高的无铅工艺温度下回流时出现内部或基板分层开裂现象,在无铅工艺的高温下普通的PCB也会常常出现爆板现象。 此时,扫描声学显微镜就凸现其在多层高密度PCB无损探伤方面的特别优势。而一般的明显的爆板则只需通过目测外观就能检测出来。 1.5 显微红外分析 显微红外分析就是将红外光谱与显微镜结合在一起的分析方法,它利用不同材料(主要是有机物)对红外光谱不同吸收的原理,分析材料的化合物成分,再结合显微镜可使可见光与红外光同光路,只要在可见的视场下,就可以寻找要分析微量的有机污染物。 如果没有显微镜的结合,通常红外光谱只能分析样品量较多的样品。而电子工艺中很多情况是微量污染就可以导致PCB焊盘或引线脚的可焊性不良,可以想象,没有显微镜配套的红外光谱是很难解决工艺问题的。显微红外分析的主要用途就是分析被焊面或焊点表面的有机污染物,分析腐蚀或可焊性不良的原因。 1.6 扫描电子显微镜分析(SEM) 扫描电子显微镜(SEM)是进行失效分析的一种最有用的大型电子显微成像系统,最常用作形貌观察,现时的扫描电子显微镜的功能已经很强大,任何精细结构或表面特征均可放大到几十万倍进行观察与分析。在PCB或焊点的失效分析方面,SEM主要用来作失效机理的分析,具体说来就是用来观察焊盘表面的形貌结构、焊点金相组织、测量金属间化物、可焊性镀层分析以及做锡须分析测量等。 与光学显微镜不同,扫描电镜所成的是电子像,因此只有黑白两色,并且扫描电镜的试样要求导电,对非导体和部分半导体需要喷金或碳处理,否则电荷聚集在样品表面就影响样品的观察。此外,扫描电镜图像景深远远大于光学显微镜,是针对金相结构、显微断口以及锡须等不平整样品的重要分析方法。 二、热分析 2.1 差示扫描量热仪(DSC) 差示扫描量热法(Differential Scanning Calorim- etry)是在程序控温下,测量输入到物质与参比物质之间的功率差与温度(或时间)关系的一种方法。是研究热量随温度变化关系的分析方法,根据这种变化关系,可研究分析材料的物理化学及热力学性能。 DSC的应用广泛,但在PCB的分析方面主要用于测量PCB上所用的各种高分子材料的固化程度、玻璃态转化温度,这两个参数决定着PCB在后续工艺过程中的可靠性。 2.2 热机械分析仪(TMA) 热机械分析技术(Thermal Mechanical Analysis)用于程序控温下,测量固体、液体和凝胶在热或机械力作用下的形变性能。是研究热与机械性能关系的方法,根据形变与温度(或时间)的关系,可研究分析材料的物理化学及热力学性能。TMA的应用广泛,在PCB的分析方面主要用于PCB最关键的两个参数:测量其线性膨胀系数和玻璃态转化温度。膨胀系数过大的基材的PCB在焊接组装后常常会导致金属化孔的断裂失效。 2.3 热重分析仪 (TGA) 热重法(Thermogravimetry Analysis)是在程序控温下,测量物质的质量随温度(或时间)的变化关系的一种方法。TGA通过精密的电子天平可监测物质在程控变温过程中发生的细微的质量变化。 根据物质质量随温度(或时间)的变化关系,可研究分析材料的物理化学及热力学性能。在PCB的分析方面,主要用于测量PCB材料的热稳定性或热分解温度,如果基材的热分解温度太低,PCB在经过焊接过程的高温时将会发生爆板或分层失效现象。电路板上的污染物有多种,可归纳为离子型和非离子型两大类。离子型污染物接触到环境中的湿气,通电后发生电化学迁移,形成树枝状结构体,造成低电阻通路,破坏了电路板功能。非离子型污染物可穿透PC B 的绝缘层,在PCB板表层下生长枝晶。除了离子型和非离子型污染物,还有粒状污染物,例如焊料球、焊料槽内的浮点、灰尘、尘埃等,这些污染物会导致焊点质量降低、焊接时焊点拉尖、产生气孔、短路等等多种不良现象。这么多污染物,到底哪些才是最备受关注的呢?助焊剂或锡膏普遍应用于回流焊和波峰焊工艺中,它们主要由溶剂、润湿剂、树脂、缓蚀剂和活化剂等多种成分,焊后必然存在热改性生成物,这些物质在所有污染物中的占据主导,从产品失效情况来而言,焊后残余物是影响产品质量最主要的影响因素,离子型残留物易引起电迁移使绝缘电阻下降,松香树脂残留物易吸附灰尘或杂质引发接触电阻增大,严重者导致开路失效,因此焊后必须进行严格的清洗,才能保障电路板的质量。以上便是如何清洁线路板,PCB在生产和应用过程中失效分析技术详谈想了解更多关于PCBA线路板清洗的内容,请访问我们的“PCBA线路板清洗”专题
-
如何清洁线路板,PCB在生产和应用过程中出现了失效问题的分析流程
如何清洁线路板,PCB在生产和应用过程中出现了失效问题的分析流程清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。现在很多PCB板子上都会有光电元器件,那么你知道他们失效的一些原因吗?PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。随着电子信息产品的小型化以及无铅无卤化的环保要求,PCB也向高密度高Tg以及环保的方向发展。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题,并因此引发了许多的质量纠纷。为了弄清楚失效的原因以便找到解决问题的办法和分清责任,必须对所发生的失效案例进行失效分析一、失效分析的基本程序 1.1失效定位或故障定位要获得PCB失效或不良的准确原因或者机理,必须遵守基本的原则及分析流程,否则可能会漏掉宝贵的失效信息,造成分析不能继续或可能得到错误的结论。一般的基本流程是,首先必须基于失效现象,通过信息收集、功能测试、电性能测试以及简单的外观检查,确定失效部位与失效模式,即失效定位或故障定位。对于简单的PCB或PCBA,失效的部位很容易确定,但是,对于较为复杂的BGA或MCM封装的器件或基板,缺陷不易通过显微镜观察,一时不易确定,这个时候就需要借助其它手段来确定。接着就要进行失效机理的分析,即使用各种物理、化学手段分析导致PCB失效或缺陷产生的机理,如虚焊、污染、机械损伤、潮湿应力、介质腐蚀、疲劳损伤、CAF或离子迁移、应力过载等等。 1.2 失效原因分析 再就是失效原因分析,即基于失效机理与制程过程分析,寻找导致失效机理发生的原因,必要时进行试验验证,一般尽应该可能的进行试验验证,通过试验验证可以找到准确的诱导失效的原因。这就为下一步的改进提供了有的放矢的依据。最后,就是根据分析过程所获得试验数据、事实与结论,编制失效分析报告,要求报告的事实清楚、逻辑推理严密、条理性强,切忌凭空想象。 分析的过程中,注意使用分析方法应该从简单到复杂、从外到里、从不破坏样品再到使用破坏的基本原则。只有这样,才可以避免丢失关键信息、避免引入新的人为的失效机理。就好比交通事故,如果事故的一方破坏或逃离了现场,在高明的警察也很难作出准确责任认定,这时的交通法规一般就要求逃离现场者或破坏现场的一方承担全部责任。 PCB或PCBA的失效分析也一样,如果使用电烙铁对失效的焊点进行补焊处理或大剪刀进行强力剪裁PCB,那么再分析就无从下手了,失效的现场已经破坏了。特别是在失效样品少的情况下,一旦破坏或损伤了失效现场的环境,真正的失效原因就无法获得了。电路板上的污染物有多种,可归纳为离子型和非离子型两大类。离子型污染物接触到环境中的湿气,通电后发生电化学迁移,形成树枝状结构体,造成低电阻通路,破坏了电路板功能。非离子型污染物可穿透PC B 的绝缘层,在PCB板表层下生长枝晶。除了离子型和非离子型污染物,还有粒状污染物,例如焊料球、焊料槽内的浮点、灰尘、尘埃等,这些污染物会导致焊点质量降低、焊接时焊点拉尖、产生气孔、短路等等多种不良现象。这么多污染物,到底哪些才是最备受关注的呢?助焊剂或锡膏普遍应用于回流焊和波峰焊工艺中,它们主要由溶剂、润湿剂、树脂、缓蚀剂和活化剂等多种成分,焊后必然存在热改性生成物,这些物质在所有污染物中的占据主导,从产品失效情况来而言,焊后残余物是影响产品质量最主要的影响因素,离子型残留物易引起电迁移使绝缘电阻下降,松香树脂残留物易吸附灰尘或杂质引发接触电阻增大,严重者导致开路失效,因此焊后必须进行严格的清洗,才能保障电路板的质量。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。以上便是如何清洁线路板,PCB在生产和应用过程中出现了失效问题的分析流程
-
集成电路板清洗合明科技分享:金锡合金密封空洞控制技术研究
集成电路板清洗合明科技分享:金锡合金密封空洞控制技术研究清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。欢迎点击了解更多“PCBA线路板清洗剂产品”作者:田爱民 赵鹤然(中国电子科技集团公司第四十七研究所)摘要:金锡合金密封工艺广泛应用于高可靠军用电子元器件产品上,对密封空洞的控制有很高的要求,基于此,以某型号控制电路需求为依托,针对陶瓷气密封装的密封空洞控制技术,研究了影响密封空洞的基本前提和关键因素。提出了焊料环设计、焊接气氛、原材料表面状态是决定密封空洞能否被有效控制的基本前提。在焊接峰值温度和焊接压力两个关键因素上进行优化方法对比实验,得出了最佳的提高密封空洞控制水平的有效方法。成果推广到多种封装形式上,有助于提高军用元器件密封质量,可广泛应用于航空航天和空间设备仪器的核心电路封装中,在行业内具有一定的指导意义。1 引言金锡合金密封是高可靠性集成电路封装行业内的主流密封技术,具有焊接强度高、耐腐蚀性强、气密性良好的特点,广泛使用在航空、航天、导弹、船舶等高可靠元器件上。对于航天和军用产品气密封装,主要关注气密性、内部气氛、焊接强度、密封空洞等方面,随着密封技术的不断提升和设备能力进步,大多数问题都已解决,成品率得到很大提升,但是在密封空洞控制技术上还没有形成统一明确有效的控制方法和技术标准。密封空洞是一种较为常见的封装质量隐患,它的存在会使产品的密封强度和气密性降低,随着服役时间的延长,极易诱发多种致命的失效模式。引起密封空洞的因素有多种,包括温度曲线、焊接压力、原材料表面状态、焊料环设计、焊接气氛等。近年来随着 X 射线设备的普及和宇航级半导体集成电路通用规范的推广,行业内大多数用户都对密封空洞控制提出了明确的要求。以某型号控制电路的需求为依托,主要研究陶瓷气密封装的密封空洞控制技术,分别阐述密封空洞控制的基本前提和主要因素,总结各种常见失效现象的原因和机理,提出一种有效规范的密封空洞控制方法。2 密封空洞的影响因素2.1 焊料环设计与管壳密封区相匹配的焊料环设计是控制焊接空洞的基本前提之一。在低温烧结密封过程中,焊料环的宽度决定了焊料融化后可以有效铺展的范围。如果焊料环的宽度相对于密封区域过窄,在密封过程中,熔融焊料由于总量不足,无法填满整个密封区域,必然会在边缘或者内部形成密封空洞,一些部位的焊料层厚度也会明显比周围的区域要薄,这就对密封可靠性造成非常大的隐患;如果焊料环的宽度相对于密封区域过宽,焊料总量过于充分,受热熔化后势能增大,极具铺展性,固化后,往往会溢出密封区域,甚至爬到盖板表面。2.2 焊接气氛良好的焊接气氛也是控制焊接空洞率的基本前提之一。根据金锡合金的氧化机理,氧易与金锡合金中的锡反应生成金属氧化物,在表面形成氧化膜,反应过程如下式所示。氧化膜在密封过程中阻碍熔融焊料与金属镀层之间的浸润,导致焊料熔融状态铺展不良,形成焊接空洞。控制焊接气氛的核心要素有两个,一是保护气体的纯度,二是焊接炉腔体内抽真空的真空度。这两个因素共同作用,可以有效避免焊接过程中焊料的氧化。2.3 原材料表面状态表面状态不良对焊接空洞有较大影响,包括表面沾污、划伤、氧化、镀层缺陷、平整度等因素,都会阻碍焊料的流淌和浸润。良好的表面状态也是控制焊接空洞的基本前提之一。可采用外部目检将镀层缺陷、表面沾污、划伤等不合格品剔除。进一步,采用等离子清洗对管壳表面和盖板焊料环表面进行清洗,以去除原材料表面的氧化物和有机物。2.4 温度曲线焊接温度曲线是控制焊接空洞的核心要素之一。温度曲线的精确设计,相当于是对焊料融化和流淌过程的精确控制。在焊接温度设计中,温度过高或者加热时间过长,焊料熔融剧烈,流淌性很强,部分焊料会溢出封焊区域,造成密封区内焊料不足,进而形成空洞;反之,焊料熔化不充分,熔融后的焊料较脆,铺展效果不好,边缘区域的焊接效果无法保证,多发空洞现象。2.5 焊接压力焊接压力也是控制焊接空洞的核心要素之一。焊接压力,与焊接温度、焊料状态之间存在微妙的平衡。一方面,焊接压力的施加,可以弥补焊接温度、焊料状态等因素的设计缺陷,对焊料提供铺展的驱动力,加强焊料的铺展作用。另一方面,焊接压力与空洞的控制关系非常密切,适当的加压一方面可以使母材和焊料形成紧密的接触,有利于金镀层与金锡焊料之间扩散反应的进行;除此之外,由于焊料受到挤压沿着焊接面间隙外溢运动,可以排除焊料中吸附的气体成分,从而降低密封的空洞。3 密封工艺优化方法及实验结果3.1 密封空洞控制的前提在 2.1-2.3 中已经提到,焊料环的设计、焊接气氛的控制、原材料表面状态是控制密封空洞的前提。上述三个因素如果出现异常,密封效果会出现较大的偏差,在比较严重的情况下,不但密封空洞难以控制,还会衍生出新的失效模式。想了解更多关于PCBA线路板清洗的内容,请访问我们的“PCBA线路板清洗”专题(1)焊料环优化设计要想确保密封完成后焊料在合理范围内流淌,焊料环宽度ε1,焊料环距密封区内侧距离 ε2,盖板外侧密封区宽度ε3,三个宽度必须符合一定的比例,且倒角设计要求密封区内侧倒角与焊料环内侧倒角半径一致,密封区外侧倒角与焊料环外侧倒角半径一致,如图 1 所示。经过大量实验总结出,ε2 在0.005-0.010 英寸,ε3 在 0.010-0.015 英寸。ε1、ε2、ε3 的比例关系是焊料环设计的关键,不同生产线应有不同的控制规范。图 2 为焊料环优化前后的密封效果对比图,从图中可以看出,焊料环设计过窄,密封后封焊区域靠近管腔一侧边缘空洞明显;焊料环设计过宽,密封过程中焊料极易溢出封焊区,形成爬盖或者内溢形成泪滴状焊球。焊料优化设计后,焊接效果良好,基本无空洞。(2)焊接气氛控制在密封过程中,一般要求真空炉内真空度小于1.0Pa,氮气纯度在 99.999% 以上,以避免在焊接过程中,氧化反应参与到共晶反应当中,在焊料表面形成氧化膜,阻碍金锡焊料与母材的浸润。图 3 为焊接气氛控制前后密封效果对比。3.2 密封空洞控制的核心要素在 2.4-2.5 中已经提到,焊接温度曲线和焊接压力是控制密封空洞的核心要素,对空洞的大小和数量有直接的影响。(1)焊接温度曲线优化设计图 4 是某型号 DIP8 电路优化前金锡合金密封的工艺曲线,通过现有工艺曲线在进行电路密封时,最大空洞的宽度占设计宽度的 20% 左右。通过大量工艺曲线优化实验发现,在温度曲线中,峰值温度对密封空洞的尺寸大小有非常大的影响,其余条件对空洞影响则较小。研究在原有工艺曲线基础上,针对焊接峰值温度设计了专项的优化方案,从 310℃至 340℃之间按每 10℃一个温度梯度设置优化试验方案,观察空洞率的变化。图 5 给出了不同峰值温度时的密封效果对比。表 1 是不同峰值温度时,最大空洞宽度占设计密封宽度的比值。从结果可以看出,峰值温度在 330℃时,密封后电路空洞的大小和数量要优于其他峰值温度密封后电路。(2)焊接压力优化设计焊接压力也是控制密封空洞尺寸的核心要素,通过不锈钢弹簧夹施加压力到管壳和盖板上,在4N~10N 焊接压力之间,以 2N 为步进单位进行优化试验。图 6 给出了不同焊接压力时的密封效果对比。表 2 是不同焊接压力时,最大空洞宽度占设计密封宽度的比值。根据表 2 中的结果可以看出,当焊接压力小于2N 时,密封空洞尺寸很大。焊接压力在 8N 时,密封效果后处于最优状态,电路空洞的大小和数量要优于其他焊接压力密封后的电路。4 方法的推广及验证根据优化后的密封控制方法,以 PGA84 和PGA132 封装形式的外壳为例,对密封效果进行了X 射线照相验证, 图 7 是 X 射线照相检验结果图。从图中可以看出,两种封装形式密封的效果良好,最大空洞宽度占设计宽度的 5% 以下,可见,研究结果可以推广到同类产品之上。5 结束语通过对陶瓷管壳集成电路密封空洞的实验研究,得到了金锡合金密封空洞控制的基本前提和关键因素。从试验结论可以看出,焊料环尺寸设计、焊接气氛控制、原材料表面状态是金锡合金密封空洞控制的基本前提,在控制好以上因素的基础之上,密封空洞的控制能够达到一个很高的水平;如果基本前提控制得不好,焊料的流淌很怪异,从而引发各种焊接问题,在此情况下空洞很难达到要求的控制标准。另一方面,对控制密封空洞的关键因素进行了总结,主要包括峰值温度和焊接压力两个关键项,并以DIP8 封装形式为例, 通过峰值温度和焊接压力的优化设计,大幅提高了金锡合金密封的质量控制水平,将空洞率降低到 5% 以下。 研究成果还以推广到 PGA84 和 PGA132 等多种封装形式上,效果良好。控制金锡合金密封空洞的优化方法有助于提高军用元器件的封质量,可广泛应用于导弹、飞船、雷达、舰艇、航天器等航空航天和空间设备仪器的核心电路封装中,在行业内具有一定的指导意义。文章来源: 半导体封装工程师之家欢迎点击了解更多“PCBA线路板清洗剂产品”电路板上的污染物有多种,可归纳为离子型和非离子型两大类。离子型污染物接触到环境中的湿气,通电后发生电化学迁移,形成树枝状结构体,造成低电阻通路,破坏了电路板功能。非离子型污染物可穿透PC B 的绝缘层,在PCB板表层下生长枝晶。除了离子型和非离子型污染物,还有粒状污染物,例如焊料球、焊料槽内的浮点、灰尘、尘埃等,这些污染物会导致焊点质量降低、焊接时焊点拉尖、产生气孔、短路等等多种不良现象。这么多污染物,到底哪些才是最备受关注的呢?助焊剂或锡膏普遍应用于回流焊和波峰焊工艺中,它们主要由溶剂、润湿剂、树脂、缓蚀剂和活化剂等多种成分,焊后必然存在热改性生成物,这些物质在所有污染物中的占据主导,从产品失效情况来而言,焊后残余物是影响产品质量最主要的影响因素,离子型残留物易引起电迁移使绝缘电阻下降,松香树脂残留物易吸附灰尘或杂质引发接触电阻增大,严重者导致开路失效,因此焊后必须进行严格的清洗,才能保障电路板的质量。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。
-
怎样清洗PCBA板和介绍PCB软硬结合板
怎样清洗PCBA板和介绍PCB软硬结合板 PCB软硬结合板,也就是刚柔PCB板,他是在应用中结合了柔性和刚性电路板技术的电路板。清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。大多数刚挠性板由多层挠性电路基板组成,这些挠性电路基板从外部和/或内部附接到一个或多个刚性板上,具体取决于应用程序的设计。柔性基板被设计为处于恒定的挠曲状态,并且通常在制造或安装期间形成为挠曲曲线。 刚性-Flex设计比典型的刚性板环境的设计更具挑战性,因为这些板是在3D空间中设计的,这也提供了更高的空间效率。通过能够在三个维度上进行设计,刚性挠性设计者可以扭曲,折叠和卷起柔性板基材,以达到最终应用包装所需的形状。1. 刚柔性PCB制造应用刚-柔性PCB提供了从智能设备到手机和数码相机的广泛应用。刚挠性板制造已经越来越多地用于诸如起搏器之类的医疗设备中,以减小其空间并减轻重量。刚性挠性PCB的使用具有相同的优势,可以应用于智能控制系统。在消费类产品中,PCB软硬结合板不仅使空间使用最大化和重量最小化,而且还大大提高了可靠性,从而消除了对焊接接头以及易出现连接问题的脆弱易碎接线的许多需求。这些只是一些示例,但刚柔结合的PCB可以使几乎所有先进的电气应用受益,包括测试设备,工具和汽车。如果PCB 没有保持适当的清洁,在 PCB 装配或修改过程中使用的某些材料可导致严重的电路功能性问题。此类现象中最为常见的问题之一就是焊剂。 焊剂是一种化学制剂,用于协助将组件焊接至 PCB。但令人遗憾的是如果在焊接后不加以清除,焊剂会劣化 PCB 的表面绝缘电阻,在该过程中会给电路性能造成严重退化!焊剂清洁不当会造成严重的性能降低,特别是在高精度 DC 电路中。对所有手工装配或修改过的PCB,请务必使用超声波或者喷淋工艺完成最终清洁。在使用空气压缩机风干后,采用稍高温度烘烤装配并清洗后的 PCB,可清除任何残留湿气。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。以上便是怎样清洗PCBA板和PCB软硬结合板介绍,希望可以帮到您!欢迎点击了解更多“PCBA线路板清洗剂产品”
-
封装基板氮化铝陶瓷基板焊后清洗,进一步了解介绍氮化铝陶瓷基板
封装基板氮化铝陶瓷基板焊后清洗,进一步了解介绍氮化铝陶瓷基板随着信息技术革命的到来,集成电路产业飞速发展,电子系统集成度的提高将导致功率密度升高,以及电子元件和系统整体工作产生的热量增加,因此,有效的电子封装必须解决电子系统的散热问题。清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。在此背景下,陶瓷基板具备优良的散热性能使得市场对其需求快速爆发,尤其是氮化铝陶瓷基板产品,尽管价格远高于其它基板,仍是供不应求甚至“一片难求”,这是为什么呢?(图片来源:中瓷电子)原因很简单,小编认为有三点:其一,性能好,用起来“香”,物有所值,在某些领域无法替代,一分钱一分货的道理大家都懂。其二,生产过程”历经八十一难”,得之不易,对原材料要求高,制品制备工艺复杂,生产门槛较高。其三,市场发展迅速,产能扩张速度跟不上需求增速,供货周期长,价格自然水涨船高。今天我们就这三点进一步了解氮化铝陶瓷基板。出色的导热性能首先,封装基板主要利用材料本身具有的高热导率,将热量从芯片 (热源) 导出,实现与外界环境的热交换。对于功率半导体器件而言,封装基板必须满足以下要求:(1)热导率高,满足器件散热需求;(2)耐热性好,满足功率器件高温(大于200°C)应用需求;(3)热膨胀系数匹配,与芯片材料热膨胀系数匹配,降低封装热应力;(4)介电常数小,高频特性好,降低器件信号传输时间,提高信号传输速率;(5)机械强度高,满足器件封装与应用过程中力学性能要求;(6)耐腐蚀性好,能够耐受强酸、强碱、沸水、有机溶液等侵蚀;(7)结构致密,满足电子器件气密封装需求。氮化铝性能如何呢?氮化铝作为陶瓷基板材料其性能如下:(1)氮化铝的导热率较高,室温时理论导热率最高可达320W/(m·K),是氧化铝陶瓷的8~10倍,实际生产的热导率也可高达200W/(m·K),有利于LED中热量散发,提高LED性能;(2)氮化铝线膨胀系数较小,理论值为4.6×10-6/K,与LED常用材料Si、GaAs的热膨胀系数相近,变化规律也与Si的热膨胀系数的规律相似。另外,氮化铝与GaN晶格相匹配。热匹配与晶格匹配有利于在大功率LED制备过程中芯片与基板的良好结合,这是高性能大功率LED的保障;(3)氮化铝陶瓷的能隙宽度为6.2eV,绝缘性好,应用于大功率LED时不需要绝缘处理,简化了工艺;(4)氮化铝为纤锌矿结构,以很强的共价键结合,所以具有高硬度和高强度,机械性能较好。另外,氮化铝具有较好的化学稳定性和耐高温性能,在空气氛围中温度达1000℃下可以保持稳定性,在真空中温度高达1400℃时稳定性较好,有利于在高温中烧结,且耐腐蚀性能满足后续工艺要求。由以上看来,氮化铝陶瓷具有高热导率、高强度、高电阻率、密度小、低介电常数、无毒、以及与Si 相匹配的热膨胀系数等优异性能,是最具发展前途的一种陶瓷基板材料。(图片来源:中电科43所)复杂繁琐的生产过程氮化铝陶瓷基板的生产过程较为复杂繁琐,其主要体现在两个方面,高端氮化铝粉体的制备与基板的制备。我们分别来了解下这两方面。1、氮化铝粉体几乎所有的陶瓷制品的质量都极大受到原材料品质的影响,对氮化铝陶瓷基板来说更是如此。(1)粉体制备方法目前制备氮化铝粉体的方法主要有Al2O3粉碳热还原法、Al粉直接氮化法、自蔓延高温合成法、化学气相沉积法、等离子体法等。AlN粉体作为一种性能优异的粉体原料,国内外研究者通过不断的科技创新来解决现有工艺存在的技术问题,同时也在不断探索新的、更高效的制备技术。目前最主要的工艺仍是碳热还原法和直接氮化法,这两种工艺具有技术成熟、设备简单、得到产品质量好等特点,已在工业中得到大规模应用。(来源:蒋周青等.氮化铝粉体制备技术的研究进展)(2)影响粉体性能因素较多氮化铝陶瓷产品的性能直接取决于原料粉体的特性,尤其是氮化铝最有价值的特性——导热性。影响氮化铝陶瓷导热性的因素主要有:氧及其它杂质的含量、烧结的致密度、显微结构等。而这些因素体现在氮化铝粉体上则为:氮化铝的纯度、颗粒的粒径、颗粒的形状等参数上。(3)易水解,难存储运输,需对粉体进一步改性处理相比氮化铝的其它优异性能,氮化铝粉体有个大问题就是容易水解。它在潮湿的环境极易与水中羟基形成氢氧化铝,在AlN粉体表面形成氧化铝层,氧化铝晶格溶入大量的氧,降低其热导率,而且也改变其物化性能,给AlN粉体的应用带来困难。目前的应对方法是,借助化学键或物理吸附作用在AlN颗粒表面涂覆一种物质,使之与水隔离,从而避免其水解反应的发生。抑制水解处理的方法主要有:表面化学改性和表面物理包覆。(来源:潮州三环)2、基板制备(1)陶瓷基片的成型流延成型制备氮化铝陶瓷基片的主要工艺,将氮化铝粉料、烧结助剂、粘结剂、溶剂混合均匀制成浆料,通过流延制成坯片,采用组合模冲成标准片,然后用程控冲床冲成通孔,用丝网印刷印制金属图形,将每一个具有功能图形的生坯片叠加,层压成多层陶瓷生坯片,在氮气中约700℃排除粘结剂,然后在1800℃氮气中进行共烧,电镀后即形成多层氮化铝陶瓷。此外,氮化铝基板的成型方式还有注射成型、流延等静压成型等。(2)关键步骤-烧结烧结可以说是氮化铝基板制备中至关重要的一步,主要牵扯到烧结方式的选择、烧结温度的控制、烧结助剂的添加、烧结气氛的控制等。目前AlN基片较常用的烧结工艺一般有5种,即热压烧结、无压烧结、放电等离子烧结(SPS)、微波烧结和自蔓延烧结。AlN陶瓷基片一般采用无压烧结,该烧结方法是一种最普通的烧结,虽然工艺简单、成本较低,但烧结温度一般偏高,在不添加烧结助剂的情况下,一般无法制备高性能陶瓷基片。在烧结炉中,烧结温度的均匀性深刻影响着AlN陶瓷。烧结温度均匀性的研究也为大批量生产、降低生产成本提供了保障,有利于实现AlN陶瓷基片产品的商业化生产。(图片来源:正天新材)对于陶瓷致密烧结,添加助烧剂无疑是最为经济、有效的方法。AlN陶瓷基板可选用的烧结助剂有CaO、Li2O、B2O3、Y2O3、CaF2、CaC2以及CeO2等。这些材料在烧结过程发挥着双重作用,首先与表面的Al2O3结合生成液相铝酸盐,在粘性流动作用下,加速传质,晶粒周围被液相填充,原有的粉料相互接触角度得以调整,填实或者排出部分气孔,促进烧结。同时助烧剂可与氧反应,降低晶格氧含量。在AlN陶瓷的烧结工艺中,烧结气氛的选择也十分关键的。一般的AlN陶瓷烧结气氛有3种:还原型气氛、弱还原型气氛和中性气氛。还原性气氛一般为CO,弱还原性气氛一般为H2,中性气氛一般为N2。在还原气氛中,AlN陶瓷的烧结时间及保温时间不宜过长,烧结温度不宜过高,以免AlN被还原。在中性气氛中不会出现上述情况,所以一般选择在氮气中烧结,这样可以获得性能更好的AlN陶瓷。市场状况在粉体方面,目前掌握高性能氮化铝粉生产技术的厂家并不多,主要分布在日本、德国和美国。日本的德山化工生产的氮化铝粉被全球公认为质量最好、性能最稳定,公司控制着高纯氮化铝全球市场75%的份额。日本东洋铝公司的氮化铝粉性能较好,在日本和中国受到不少客户的青睐。在国内,开展AlN粉研究、生产的厂家也有一些,主要有中电科第43所、国瓷材料、厦门钜瓷、宁夏艾森达新材料科技有限公司、宁夏时星科技有限公司、烟台同立高科新材料股份有限公司、辽宁德盛特种陶瓷制造有限公司、山东鹏程陶瓷新材料科技有限公司、三河燕郊新宇高新技术陶瓷材料有限公司、福建施诺瑞新材料有限公司、晋江华清新材料科技有限公司等。但是由于国内氮化铝粉末行业发展时间晚,产业化时间短,产量很低,粉体性能与国外相比也存在较大差距,只能满足国内部分市场的需求。而在陶瓷基片方面,我国氮化铝陶瓷基片生产企业规模较小,研发投入资金有限,技术人员较少且经验不足,导致我国氮化铝陶瓷基片行业整体水平较低,产品缺乏竞争力,以中低端产品为主,高端氮化铝基片同样依赖于进口。日本有多家企业研发和生产氮化铝陶瓷基片,是全球最大的氮化铝陶瓷基片生产国,主要研发生产氮化铝陶瓷基片产品的公司包括如京瓷、日本特殊陶业、住友金属工业、富士通、东芝、日本电气等。由于氮化铝陶瓷基片的特殊技术要求,加上设备投资大、制造工艺复杂,高端氮化铝陶瓷基片核心制造技术被日本等国家的几个大公司掌控。目前我国在加力追赶阶段,国内已有福建华清电子材料科技有限公司、中电科四十三所、三环集团、河北中瓷、合肥圣达电子、浙江正天新材料、深圳市佳日丰泰电子、宁夏艾森达、宁夏时星、福建臻璟、江苏富乐德、南京中江等多个企业实现了氮化铝陶瓷基板的国产化,随着中国下游电子产业的不断发展,未来氮化铝基板的市场需求也会随之增长;此外,随着我国氮化铝基板生产技术的不断提升,氮化铝基板产品也将不断升级,将会进一步推动其应用领域的拓展,需求规模也会得到扩张。整体来看,未来中国氮化铝基板行业发展前景十分广阔。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。
-
回流焊后PCBA清洗合明科技分享:关于回流焊接温度曲线设置的研究
回流焊后PCBA清洗合明科技分享:关于回流焊接温度曲线设置的研究清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。作者:姜海峡(天津铁路信号有限责任公司)摘要:从焊接机理及回流焊接温度曲线理论分析入手,阐述了回流焊接温度与焊接时间对PCBA(印制电路板组)焊接质量的影响,论述了回流焊接温度曲线的设置与测试方法,包括测试点的选取、热电偶的固定方法,并以监测采集板卡为例,利用文中叙述的回流焊接温度曲线设置方法,设置该产品的温度曲线。通过对比分析,可调整参数至更加理想的回流焊接温度曲线,从而对该方法进行了验证。随着电子技术的不断发展,电子元器件外形尺寸日益小型化,印制电路板组装日益高密度化,致使表面贴装技术(SMT)的工艺窗口越来越小,组装难度越来越大。如何建立良好而稳固的工艺,提高回流焊接的一次合格率,已经成为SMT技术的核心问题,解决这一问题的关键就在于回流焊接温度曲线的设置。一条适宜的温度曲线不仅应该确保PCBA上所有焊点润湿良好、焊接牢靠,还应该确保元器件及PCB(印制电路板)本身避免因受温度冲击而损坏。而温度冲击主要来源于温度曲线的升温斜率和降温斜率的影响。为此,本文将针对有铅回流焊接温度曲线设置及测试等内容展开论述。1 回流焊接温度曲线理论1.1 回流焊接的定义印刷机通过钢网将适量的焊锡膏施放在印制板的焊接部位,贴片机按程序将元器件贴放在焊接部位,焊锡膏将元器件粘在印制板上,通过回流焊炉的热源加热,使焊料熔化而再次流动浸润,将元器件焊接到印制板上。这一过程称为再流焊接,也称回流焊接。1.2 焊接机理焊锡膏的有效成分为焊锡合金粉和助焊剂。焊锡合金粉是易熔金属,其熔点低于被焊金属,有铅焊料熔点为183℃。当焊料被加热到熔点以上时,焊接金属表面在助焊剂的活化作用下,对金属表面的氧化层和污染物起到清洗作用,同时使金属表面获得足够的激活能。熔融的焊料在经过助焊剂净化的金属表面上进行浸润,发生扩散、熔解、冶金结合,在焊料和被焊接金属表面之间生成金属间结合层(焊缝),冷却后使焊料凝固,形成焊点。焊点的抗拉强度与焊缝的结构和厚度有关。焊缝不能太厚,因为金属间结合层(焊缝)的主要成分是Cu6Sn5,比较脆,且基板材料、焊盘、元器件焊端之间的热膨胀系数有差异,容易产生龟裂,造成失效。焊缝的厚度与焊接温度和时间成正比。例如,当焊接温度在熔点183℃以上但还未高出30℃时,在焊料和金属表面之间的扩散和熔解不能生成足够的焊缝,只有在高出熔点30~40℃并维持约2s的条件下才能生成良性的结合层。但焊接温度更高时,扩散反应率就加速,就会生成过多的恶性金属间结合层,焊点变得脆性而多孔。因此,合理设置回流焊接温度和时间是确保焊接质量、提高一次合格率的关键。1.3 回流焊接温度曲线的理论分析图1所示是一条理想状态下的回流焊接温度曲线。所谓温度曲线,实际上是指PCBA通过回流炉时,PCB上测试点的温度随时间变化的曲线,它能直观反映出该点在整个焊接过程中的温度变化,为获得最佳焊接效果提供了科学依据。该曲线由4个区间组成,即预热区、保温区、回流区和冷却区,前3个区间为加热区,最后1个区间为冷却区,大部分焊锡膏都能通过这4个温区成功实现回流焊接。现将各区间的温度、停留时间以及焊锡膏在各区的变化情况介绍如下。1)预热区,也叫斜坡区,焊接对象从室温开始逐步加热至大约150℃的区域,目的在于缩小与回流焊接区域的温差,此时焊料中的溶剂被挥发。此区域需要注意升温速率不能太快,以避免焊锡膏飞溅和元器件热应力损伤。但是升温速率也不宜太慢,以免焊锡膏感温过度而没有足够的时间达到活性温度,通常控制在1~3℃/s,时间控制在60~120s。2)保温区,也叫均温区或活性区,使焊接对象温度维持在焊料熔点以下(150~160℃)一段时间的区域。在此期间,焊料中助焊剂活化,并清除焊盘及引脚上的氧化物;PCB上不同质元器件温度趋于均匀、减少温差。时间控制在60~90s。时间过长会使焊锡膏再度氧化,提前使助焊剂失效。3)回流区,也叫再流区或焊接区,温度从保温区继续上升,超过焊锡膏熔点30~40℃,焊锡膏完全熔化并润湿元器件焊端与焊盘,同时发生扩散、熔解、冶金结合,形成金属间化合物。考虑元器件承受热应力因素,升温速率不应超过3℃/s。达到峰值温度的焊接时间不应超过10s,以免形成恶性金属间化合物,使焊点变脆。4)冷却区,焊接对象温度从最高点迅速下降到75℃以下,凝固焊点,完成焊接。降温过快将会引起元器件内部的温度应力,过缓又会导致焊盘的更多分解物进入焊锡中,产生灰暗毛糙的焊点,甚至引起焊点润湿不良和结合力弱,降温速率应控制在-3℃/s以内。2 温度曲线的设置与测试方法2.1 温度曲线的设置方法在大规模生产中,每个产品的实际温度曲线应根据所焊接的PCBA的特点(PCB的尺寸、元器件的密集程度、元器件的种类等)进行设置、测试来确定,即使使用同样的回流焊炉、同样的焊锡膏,不同的PCBA也需要通过试验确定适合的温度曲线。合适温度曲线的判定依据是焊点质量和元器件、PCB的材料损伤情况。前者包括焊点的外观形态、润湿情况、是否存在冷焊空洞及焊料与被焊接金属表面之间生成的金属间化合物的质量等;后者包括元器件开裂、变形,PCB分层、变色、变形等。这些不仅影响着回流焊接的一次合格率,还会给PC-BA带来致命的损伤。回流焊接温度曲线设置时需要考虑的关键因素及相关注意事项详见表1。表1中的关键因素大部分与焊接时间和温度有关。焊接时间的设置主要取决于回流焊炉温区长度和传送带速度;炉温的设置也与传送带速度、热传递量有关。传送带速度应由焊接的工艺时间、回流焊炉的温区总长度来确定。传送带速度确定以后才开始进行温度设定。带速慢、炉温可低些,因为较长的时间也可达到热平衡,反之可提高炉温。如果PCB上元器件密、大元器件多,达到热平衡需要较多热量,这就要求提高炉温;反之可降低炉温。2.2 温度曲线的测试方法温度曲线的测试,一般采用随PCB板一同进入炉膛内的温度采集器(即温度记忆装置)进行,测试采用K型热电偶,测试后将记忆装置数据输入PC专用测试软件,进行曲线数据分析处理,打印出PCB组件的温度曲线。这一套装置也称温度曲线测试仪。温度曲线设置好后,试生产前要通过曲线测试仪在测温板(焊好的产品PCBA)上进行测试确定。测试的关键在于测试点的选取和热电偶的固定。2.2.1 测试点的选取一般情况下至少应选取3个测试点,即能够反映PCBA上最高温度的点、最低温度的点及重点关注元器件的测试点。最高温度点一般在炉堂中间、无元器件处、元器件稀少处或小体积元器件处;最低温度点一般在大型元器件处(如PLCC)、大面积覆铜处、传输导轨或炉堂的边缘处、以及热风对流吹不到的位置。有BGA元件时,BGA测试点应不少于2个,即测试BGA元件锡球和BGA元件表面温度各1点;有QFP元件时,在引脚焊盘上选取1点测试引脚底部温度;还有1点用于测试PCB表面温度或CHIP元件温度。若一块PCB上有几个QFP元件时,应优先选取较大者为测试点。2.2.2 热电偶的固定热电偶的固定可以选用高温焊锡、高温胶带或红胶等方式,其中最佳方案是采用高温焊锡焊接在需要测量温度的地方(见图2);其次是用高温胶带固定,但没有直接焊接的效果好(见图3)。热电偶固定时应预先将原焊点处的焊料清除干净,测试端头不应翘起,形成的焊点应尽可能与真正焊点大小一致,这样不会影响温度的真实性。3 实际应用本文以监测采集板卡的回流焊接温度曲线设置为例,采用前文叙述的焊接机理及回流焊接温度曲线设置理论,设置该产品的温度曲线,并通过温度曲线测试仪测试其实际曲线,与理想温度曲线及制造商提供的焊锡膏回流焊接温度曲线进行比对分析,调整参数,最终获得满意的回流焊接温度曲线。3.1 实例用到的设备、仪器、材料及其特性本实例中用到的主要设备、仪器及材料详见表2,供应商提供的焊锡膏回流焊接温度曲线如图4所示。由图4可知,该焊锡膏的回流焊接峰值温度约为220℃,保温温度为150~160℃;预热时间约为1.3min(约80s),保温时间约为1min(即60s),回流焊接时间不足1min,全过程加热时间总共约为3.3min(即200s)。由此可见,预热时间占全程的4/10,保温时间占全程的3/10,回流焊接时间占全程的3/10。恰好用到的回流焊炉共有10个加热温区,并且长度均为370mm。因此,可以把回流焊炉10个温区分配为预热4个温区、保温3个温区、回流焊接3个温区,每个温区大约20s,传送带速度即为110cm/min(370mm/20s=18.5mm/s=111cm/min)。3.2 参数设置该产品的回流焊接过程参数设置见表3。3.3 实际温度曲线测试本文将使用KIC2000炉温测试仪,对监测采集板卡按上述参数设置的回流焊接进行温度曲线测试。分别选取最热点、集成电路芯片引脚、最冷点和贴片电阻焊端4个测试点,测试后所得温度曲线如图5所示,区间末实际板温见表3。3.4 参数调整从图5曲线可以看出,保温区温度略低,焊接温度峰值出现在回流区末端,焊点由最高温度点直接接触强冷空气,不利于形成良好焊点,需要将最高温度点略向前移,使焊接温度在回流区内形成由最高点下降的趋势。因此,对该产品的温度曲线进行了优化,重新设置的参数见表4,测试的温度曲线如图6所示,这条曲线基本接近供应商推荐的焊接温度曲线,当然还可以进一步调整、测试,以获得更加理想的焊接温度曲线。使用这条温度曲线加工的监测采集板卡,首件试制后,经使用视频显微镜检测,板面未见锡珠;焊点光亮饱满、润湿良好,器件及PCB均未见受损现象。量产后通电调试,整批产品合格率为100%。4 结语综上所述,设置温度曲线时,首先应对回流焊炉的结构、焊锡膏的性能、PCBA的尺寸及元器件的分布等情况进行全面了解,根据焊接机理和焊锡膏特性确定回流焊接峰值温度及合适的回流焊接时间,结合回流焊炉结构设置温区及传送带速度,运用传热学定律合理调整炉温,并与理想温度曲线进行比较并反复调整,直至获得实际产品所需要的合适的回流焊接温度曲线,以提高回流焊接一次合格率。来源: 半导体封装工程师之家针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂
-
PCBA板清洁,PCBA板返修要求重点介绍
PCBA板清洁,PCBA板返修要求重点介绍PCBA板返修是一个很重要的环节,一旦处理不好,会导致PCBA板报废,影响良率。清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。那么,PCBA板返修要求都有哪些?一、PCBA及潮湿敏感元器件的烘烤要求1、所有的待安装新元器件,必须根据元器件的潮湿敏感等级和存储条件,按照《潮湿敏感元器件使用规范》中相关要求进行烘烤除湿处理。2、如果返修过程需要加热到110℃以上,或者返修区域周围5mm以内存在其他潮湿敏感元器件的,必须根据元器件的潮湿敏感等级和存储条件,按照《潮湿敏感元器件使用规范》中相关要求进行烘烤去湿处理。3、对返修后需要再利用的潮湿敏感元器件,如果采用热风回流、红外等通过元器件封装体加热焊点的返修工艺,必须根据元器件的潮湿敏感等级和存储条件, 按照《潮湿敏感元器件使用规范》中相关要求进行烘烤去湿处理。对于采用手工铬铁加热焊点的返修工艺,在加热过程得到控制的前提下,可以不用进行预烘烤处理。二、PCBA及元器件烘烤后的存储环境要求烘烤后的潮湿敏感元器件、PCBA以及待更换的拆封新元器件,一旦存储条件超过期限,需要重新烘烤处理。三、PCBA返修加热次数的要求组件允许的返修加热累计不超过4次;新元器件允许的返修加热次数不超过5次;上拆下的再利用元器件允许的返修加热次数不超过3次。针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。以上便是PCBA板清洁,PCBA板返修要求重点介绍,希望可以帮到您!欢迎点击了解更多“PCBA线路板清洗剂产品”
-
动力电池FPC线路板清洗,FPC行业概览与产业链介绍
动力电池FPC线路板清洗,FPC行业概览与产业链介绍FPC受益于智能手机、汽车电子等行业的需求爆发,成为近年来PCB行业各细分产品中增速最快的品类。清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。01 FPC行业概览印制电路板(PCB)是电子产品的关键电子互连件,通过电路将各种电子元器件连接起来,起到导通和传输的作用。按柔软度划分,PCB可分为刚性印制电路板、挠性(柔性)印制电路板(FPC)和刚挠结合印制电路板。FPC(Flexible Printed Circuit)即柔性印制线路板,简称软板。是由挠性覆铜板(FCCL)和软性绝缘层以接着剂(胶)贴附后压合而成。与传统 PCB 硬板相比,具有生产效率高、配线密度 高、重量轻、厚度薄、可折叠弯曲、可三维布线等显著优势,更加符合下游电子行业智 能化、便携化、轻薄化趋势,适用于小型化、轻量化和移动要求的电子产品。根据Prismark数据,2021-2026年,全球FPC市场规模将从141亿美元增长至172亿美元,CAGR为4.1%。02 FPC 产业链梳理FPC产业链直接原材料上游为挠性覆铜板FCCL,下游为终端消费电子产品。全球来看,目前日资企业占据产业链上游的绝对主导地位,短期格局不会改变。产业链下游产品呈现出日益多元化的发展态势。上游:FPC材料行行查数据显示,FPC产业链上游主要原材料包括:挠性覆铜板(FCCL)、覆盖膜、元器件、屏蔽膜、胶纸、钢片、电镀添加剂、干膜等八大类。挠性覆铜板(FCCL)FPC的所有加工工序均是在 FCCL 上完成的。FCCL是生产FPC的关键基材,成本占比达到40%-50%。FCCL主要由压延铜箔、聚酰亚胺(PI)薄膜或聚酯(PET)薄膜基材薄膜和胶黏剂,基材PI薄膜是其核心原料。全球 FCCL 产能主要集中在日本、中国大陆、韩国以及中国台湾。随着国内 FCCL 产能不断释放,中国大陆 FPC 企业逐步实现在 FPC 上游原 材料领域的国产替代。FCCL主要生产厂商:聚酰亚胺聚酰亚胺(polyimide,PI),含有酰亚胺基的芳杂环,是目前工程塑料中耐热性最好的高分子材料之一国内的聚酰亚胺薄膜主要用于普通的电工级薄膜及电子产品的覆盖膜、补强膜等。市场高端PI浆料和PI膜,基本上被国外垄断。国内企业主要包括中国台湾地区的达迈科技和达胜科技,以及中国大陆的瑞华泰、时代新材、丹邦科技和鼎龙股份(PI浆料)等。而美国杜邦、日本钟渊化学、日本东丽、宇部兴产和韩国SKC这几家美日韩企业占据了PI市场份额的64%,形成了国外寡头垄断的局面。中游:FPC制造FPC是全球充分竞争行业,竞争格局集中,前四大厂商市占率之和己近70%。日本旗胜和鹏鼎控股为全球Top2 FPC供应商,其份额领先其他厂商较多。目前,全球领先企业在 FPC 产品制程能力上,其线宽线距可以达到 30-40μm、孔径达到 40-50μm,并进一步向 15μm 及以下线宽线距、40μm 以下孔径方向发展。国内本土头部企业在 FPC 产品制程能力上,也突破了 40-50μm 线宽线距、70-80μm 孔径技术,并进一步向 40μm 以下线宽线距、60μm 以下孔径制程能力突破。本土企业具有代表性的FPC厂商主要包括鹏鼎控股、东山精密、弘信电 子、传艺科技、上达电子、景旺电子等。近年来日系龙头旗胜科技开始转向高毛利的汽车市场,住友电工、藤仓等开始收缩A客户供应,鹏鼎控股和东山精密大力投入自动化产线,份额持续增长,台系企业则相对稳定。在 2021 年的PCB 全球产值分布中,中国台湾以 32.8%的占比位居第一,中国大陆的占比上升至 31.3%,排名第二,日本的产值占比下降至 17.2%,降幅超过 50%。近年来以日企为代表的海外 PCB 厂商扩产意愿较弱并逐步退出。中国大陆积极承接产业转移,PCB 产值及其在全球的 占比快速提升,未来国产FPC仍有广阔替代空间。资料来源:NT Information, 长城证券下游:终端应用FPC产业链下游为各类应用,包括显示/触控模组,指纹识别模组、摄像头模组等。最终应用包括消费电子、通讯设备、汽车电子、工控医疗、航空航天等领域。从下游看,智能手机功能创新及大容量电池压缩内部空间,FPC单机用量提升;可穿戴设备高增成长增加了FPC使用量;AR/VR飞速增长开辟了软板应用新场景;汽车电动化和智能化带来FPC单车价值量的大幅提升。其中动力电池FPC替代铜线束趋势明确,提升了FPC单车价值量约600元。随着下游终端产品更新换代 加速及其品牌集中度日益提高,头部 FPC 厂商凭借已有的技术和规模优势。通过筑高行业壁垒,巩固竞争中的优势地位,进一步提高了 行业市场集中度。伴随中国 FPC 产业链配套的进一步完善、技术水平的稳步提高以及产能规模的不断提升,内资 FPC 企业有能力满足新能源 汽车与新兴消费电子产品对于 FPC 的需求,国内 FPC 企业竞争力将持续增强,市场份额也将随之增加。来源:乐晴智库针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基清洗剂和半水基清洗剂,碱性水基清洗剂和中性水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。 合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂
-
电子工业清洗剂合明科技分享:功率电子封装结构设计的研究
电子工业清洗剂合明科技分享:功率电子封装结构设计的研究清洗剂_洗板水_水基清洗剂_电路板清洗_半导体清洗_治具清洗_芯片清洗_助焊剂_助焊剂清洗_锡膏清洗_合明科技专注精密电子清洗技术20多年,是SMT贴装/DIP封装,功率半导体器件及芯片封装精密清洗工艺技术方案、产品、清洗设备提供商。精密电子清洗除焊后助焊剂、锡膏、焊膏、球焊膏、焊锡膏、锡渣等残留物。水基系列产品,精细化对应涵盖从半导体封装到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳. 先进封装包括倒装芯片、WLCSP晶圆级芯片封装、3D IC集成电路封装、SiP系统级封装、细间距封装等等。作者:王美玉 胡伟波 孙晓冬 汪青 于洪宇封装技术是一种将芯片与承载基板连接固定、引出管脚并将其塑封成整体功率器件或模块的工艺,主要起到电气连接、结构支持和保护、提供散热途径等作用。封装作为模块集成的核心环节,封装材料、工艺和结构直接影响到功率模块的热、电和电磁干扰等特性。目前成熟的封装技术主要是以银胶或锡基钎料等连接材料、引线连接等封装结构为主,耐高温、耐高压性能差,电磁兼容问题突出,无法提供高效的散热途径。近来,烧结银互连材料、三维集成封装结构等由于具有优异的耐高温、高导热性能,可以实现双面散热、大幅降低开关损耗,使得功率模块具有良好的热、电特性和可靠性,获得了越来越多的研究和关注,有望满足第三代半导体器件在高温、高压和高频领域的可靠应用。本文针对功率电子封装结构设计的最新研究进展进行了总结和展望。封装结构根据芯片组装方式和互连工艺的不同,功率电子封装结构可分为焊接式封装和压接式封装两种形式。封装结构的发展趋势如图4所示,其中焊接式封装可以采用引线键合、倒装芯片(BGA互连)、金属柱互连、凹陷阵列互连、沉积金属膜互连等结构。压接式封装是借助外界机械压力形成互连结构。为了便于对比分析,将上述几种封装方式的优缺点列于表6。引线键合具有技术成熟、成本低、布线灵活等优点。然而,引线键合的模块具有较高的寄生电感,只能从底板单面散热。并且,由于键合引线和芯片的CTE不匹配,产生较大的热-机械应力,使得焊点易疲劳失效,成为模块在功率循环过程中最主要的失效形式。图4 封装结构的发展趋势表6 封装结构对比目前功率电子封装结构逐渐从传统的引线键合标准封装结构向二次注塑(Overmold)、双面连接(Double-Side Bonding)、器件集成(Component Integration)、三维功率集成封装结构(3D Power Integration)发展。通过去除引线,可以降低电磁干扰、提高散热效率、增大集成度。其中,注塑结构为紧凑型平面封装,易于批量模块生产;双面连接结构可以实现双面散热,提高散热效率;器件集成结构可以将多种功能集成在模块内部,提高开关速度;三维功率集成结构是将芯片在垂直方向上堆叠连接,可大幅降低寄生电感,提升开关性能。相比于二维封装,三维封装具有显著的优点,如可以在垂直方向上大大缩短回路距离,降低寄生电感和电磁干扰,提高传输速度,提高开关性能,降低功率损耗;可以集成多种芯片和器件,如门极驱动电路、去耦电容、散热器等,进一步提高功率集成密度,缩小封装体积。但是,三维封装目前也面临一些挑战,如芯片叠层互连带来的热管理、生产工艺和良率等问题,制程工艺有待进一步完善。3.1 二次注塑封装二次注塑封装结构是在传统引线键合的封装结构基础上,将芯片直接粘接在引线框架上,去除了键合引线,并用环氧树脂进行注塑封装的结构。与引线键合的封装结构相比,注塑封装的芯片顶部连接面积增大,使得散热效率提高;寄生电感降低,使得功率损耗降低,并且非常利于模块化批量生产,在电动汽车的整流器中得到广泛应用。3.2 双面连接封装双面连接结构是将芯片分别与上、下基板连接,例如西门康公司提出的SKiN功率模块、富士电机提出的铜针互连SiC功率模块等,可以达到去除键合引线的目的。双面连接封装结构主要有两个优点:(1)消除发射极表面的引线键合,有效降低寄生电感,减小电压过冲和功率损耗,提高开关性能;(2)实现芯片上下两个方向散热,提高散热效率,有效降低芯片结温,从而减缓失效。美国橡树岭国家实验室提出了一种双面连接DBC基板封装的Si IGBT或SiC MOSFET功率模块,相比于传统的引线键合模块,其电感降低62%,开关损耗降低50%~90%,散热效率提高40%~50%。但双面连接结构也有一些缺点。第一,相比于引线键合模块,双面连接结构具有更多层材料,加大了封装工艺的复杂性。第二,各层材料的CTE不同,热失配会产生更大的热-机械应力,降低了连接层可靠性。为了降低热-机械应力,一些与芯片CTE匹配的金属,如Mo或Cu/Mo/Cu等被用作中介层材料。第三,在实现不同厚度的多芯片双面连接的功率模块时,如图5所示,需要可以在芯片和DBC基板之间电镀或连接不同高度的微型金属柱(Micro-Metal Post)或铜顶针(Cu Pin)等,解决多芯片厚度不同带来的高度差异问题。第四,锡基钎料是模块封装中最常用的互连材料,在双面连接模块封装过程中,通常需要多个连接步骤,这就需要一组具有不同熔点的钎料,限制了模块的服役温度。因此在双面连接封装结构中,具有高导热、高导电和高熔点的烧结银焊膏成为了互连材料的优先选择。图5 双面连接封装结构3.3 器件集成封装器件集成封装是在模块里集成多种功能的器件,例如集成门极驱动电路、去耦电容、温度传感器、电流传感器和保护电路等。器件集成封装具有很多优点,例如通过集成门极驱动电路和去耦电容,可以降低母排或模块外部接插件的寄生电感,缩短功率器件和门极驱动之间的连接,降低门极回路电感,实现抑制电磁干扰,提高均流性能和开关速度。但是该封装结构也存在一定的局限性,例如,集成的门极驱动电路一般比较简单,模块的整体尺寸、载流能力和开关频率受各集成器件的限制。此外,在器件集成封装之前,需要检验各器件的耐温性能,避免因为器件集成距离太近,影响温度敏感器件的正常工作。3.4 三维功率集成封装三维集成封装结构形式如图6所示,三维封装结构主要分为叠层型三维封装和埋置型三维封装,是在二维封装的基础上,采用引线键合、倒装芯片、微凸点、球珊阵列(Ball Grid Array,BGA)、硅通孔(Through Silicon Via,TSV)、PCB埋置等工艺技术,在垂直方向上实现多芯片的叠层互连。(a)叠层型封装:引线键合(b)叠层型封装:BGA焊球连接(c)叠层型封装:硅通孔连接(d)叠层型封装:芯片堆叠连接(e)叠层型封装:气相沉积晶圆连接(f)埋置型封装:PCB埋置式连接图6 三维集成封装结构形式示意图在叠层型三维封装中,硅通孔是最受关注的技术之一,是利用穿透衬底的硅通孔的垂直互连,实现不同芯片之间的电气互连。硅通孔封装关键技术包括硅通孔成形、填充、芯片减薄和互连等。具体步骤为:首先通过激光打孔、干法刻蚀或湿法刻蚀形成通孔,然后采用化学气相沉积等方法填充SiO2绝缘层和铜导电层,其次通过磨削加工减薄芯片,最后通过金属间键合或粘接等方法实现芯片互连。与传统平面二维引线互连结构相比,硅通孔三维结构具有尺寸小、重量轻、硅片使用效率高、缩短信号延迟同时降低功耗等优点,被广泛应用于三维晶圆级、系统级和集成电路封装中。但它也存在一定的局限性,第一是可靠性,硅通孔封装结构的功率密度高,叠层芯片的热管理问题较大;第二是成本高,封装结构、工艺和测试复杂。埋置型三维封装,是采用铜线和微孔代替键合引线,将芯片嵌入在PCB层压板中,可以缩小体积、提高可靠性,并且易于系统集成。此结构面临最大的挑战是热-机械性能较差,受限于传统PCB材料的低玻璃转化温度和高CTE带来的热-机械应力,其服役温度较低。此外,FR4-PCB层压板的剥离强度较低,约为0.9~1.25 N/mm,相比于DBC基板,PCB板嵌入式封装的模块可以承受的额定功率较低。除了上述焊接式连接之外,还可以通过压接形成三维封装,典型案例如图7所示,为西码(Westcode)IGBT压接模块内部结构图,各组件由外部施加的机械压力取代引线、钎焊或烧结形成物理连接,结构简单、成本较低、可靠性高,在高压大电流电网中得到了广泛应用。但是在压接模块中,对模块的内部尺寸、各组件的平整度和表面质量要求高,接头的导热和导电性能受压力大小和均匀性的影响很大,需要选择合适的合模压力来保证较小的接触电阻和接触热阻,但会不可避免地受到表面粗糙度和结构变形的影响。在压接结构中常引入CTE较小的弹性缓冲结构和材料,如Mo或Be垫片、弹簧片等,来均匀压力、降低热-机械应力,提高可靠性。(a)示意图(b)实物图图7 西玛的IGBT压接模块内部结构结束语功率电子封装的关键材料、连接技术和结构设计,逐渐向去除引线、提高散热性能、提高集成密度等方向发展,来满足高温、高压、高频环境的可靠应用。随着第三代半导体器件的推广应用,硅通孔技术、三维集成封装结构等是未来发展的主要趋势,相信其应用前景无限广阔。想了解更多关于半导体芯片和功率电子清洗的内容,请访问我们的“半导体芯片和功率电子清洗”产品与应用!合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。