banner
关于合明 资讯中心

BGA球焊膏清洗合明科技分享:BGA“焊点”虚焊原因分析及控制方法

发布日期:2021-08-04 发布者:合明科技Unibright 浏览次数:4151

BGA球焊膏清洗合明科技分享:BGA“焊点”虚焊原因分析及控制方法

针对电子制程精密焊后清洗的不同要求,合明科技在水基清洗方面有比较丰富的经验,对于有着低表面张力、低离子残留、配合不同清洗工艺使用的情况,自主开发了较为完整的水基系列产品,精细化对应涵盖从半导体封测到PCBA组件终端,包括有水基和半水基清洗剂,碱性和中性的水基清洗剂等。具体表现在,在同等的清洗力的情况下,合明科技的兼容性较佳,兼容的材料更为广泛;在同等的兼容性下,合明科技的清洗剂清洗的锡膏种类更多(测试过的锡膏品种有ALPHA、SMIC、INDIUM、SUPER-FLEX、URA、TONGFANG、JISSYU、HANDA、OFT、WTO等品牌;测试过的焊料合金包括SAC305、SAC307、6337、925等不同成分),清洗速度更快,离子残留低、干净度更好。



电路板调试过程中,会出现“BGA器件外力按压有信号,否则没有信号”的现象,我们称之为“虚焊”。本文通过对这种典型缺陷进行原因分析认为:焊接温度曲线、焊膏量、器件及PCB板焊盘表面情况以及印制板设计等因素对“虚焊”的产生有较大影响。在此基础上提出了相应的控制措施,使得表面组装焊点少缺陷甚至零缺陷,从而保证产品的长期可靠性。


1.前言

BGA,球栅阵列器件,大幅度提高了印制板的组装密度,其应用越来越广泛。常用的几种BGA器件包括PBGA、CBGA、TBGA等。随着BGA器件的不断发展,目前已经开发并应用的微型BGA有uBGA及CSP,其封装尺寸比芯片尺寸最多大20%,焊球最小为0.3mm,焊球最小间距为0.5mm。并且目前随着印制板的集成度越来越高,这种芯片级封装器件的应用也会越来越多,再加上BGA焊点的特殊性,其焊点检测只能借助X光来完成, 并且一旦有缺陷,返修会比较麻烦,不仅降低了生成效率,增加了生产成本,还不能保证产品质量,因此给表面组装技术提出更高的要求。


2.BGA焊点“虚焊”原因分析


2.1“虚焊”现象及其X光形貌

在产品调试时会出现“BGA器件外力按压有信号,否则没有信号”的现象。我们认为这是典型的“虚焊”现象,这也是现在业界普遍存在的问题。


从焊点的形貌方面分析,BGA焊点的接收标准在IPC-A-610D中的定义为:优选的BGA经X光检测,焊点光滑、边界清晰、无空洞,所有焊点的直径、体积、灰度和对比度均一样,位置准确,无偏移或扭转,无焊锡球,如图1所示。


实际经验得出明显的虚焊焊点形状不规则或圆形四周不光滑或焊点尺寸小,如图2所示。

BGA球焊膏清洗合明科技,微信图片_20210804094003.png

2.2“虚焊”形成的原因分析

对实际生产中出现的问题进行分析,认为形成“虚焊”可能的原因有如下几点。


2.2.1 焊球及焊盘表面氧化

若器件焊球氧化或PCB板焊盘氧化,韩料很难与焊盘之间形成牢固的冶金结合,从而不能提供持续可靠的电气性能,即表现为“虚焊”现象。


2.2.2 焊点裂纹

若BGA焊点在界面处出现裂纹,从而导致机械及电气性能失效,我们也称之为“虚焊”。BGA焊点裂纹主要是因为PCB基板和元器件的基膨胀系数不匹配(FR4的CTE为18ppm/℃,而硅芯片的CTE为2.8ppm/℃),焊点中存在残余应力而导致的。研究表明:BGA焊点(无论是SnPb还是SnAgCu焊点)裂纹绝大多数都是出现在焊球与器件的基板之间,即封装一侧,并且裂纹非常靠近封装一侧的金属间化合物。软件模拟与试验结果是吻合的。个人认为这种结论在一定程度上暴露了器件本身存在的质量问题。如图3、4为BGA焊点的金相分析图及光学检测图,裂纹出现在器件上端。

BGA球焊膏清洗合明科技,微信图片_20210804094036.png

IPC-A-610D中指出:只要裂纹底部不深入到焊点内部影响电气及力学性能就能判定为合格。但如果焊点中有裂纹,可能暂时不会影响整机的电气性能,但是在高低温循环或冲击的载荷下裂纹进一步扩展使焊点断开,则会导致整机失效。因此在实际生产张总找那个,尤其是军品,BGA焊点是不允许出现裂纹的。


2.2.3 冷焊焊点

在回流阶段,如果焊料在液相线以上温度时间过短,焊料与焊球还没有充分融合到一起随即进入冷却区,这样就会出现冷焊焊点,这种焊点表面粗糙,长期可靠性差,很容易引起焊点失效,形成“虚焊”。


2.2.4 其他

主要体现在印制板设计及印制板制造方面。如果BGA焊盘和过孔之间的阻焊焊膜质量不过关或被破坏掉或者过孔设计在焊盘下面,则焊膏在加热时很容易流到过孔里面使得该焊点处的焊膏量变少,进而使得整个BGA器件的焊球不共面,成为“虚焊”的隐患。


3.改进措施


3.1器件的保存及预处理

BGA器件是一种高度湿度敏感器件(尤其是PBGA),所以BGA必须在恒温干燥的条件下保存。一般来说,BGA较理想的保存环境为20℃~25摄氏度,湿度为小于10%RH。表中为元器件湿度敏感的等级分类,它表明在装配过程中,一旦密封包装被打开,元器件必须被用于安装、焊接的相应时间。一般来说BGA属于5级以上。

BGA球焊膏清洗合明科技,微信图片_20210804094042.png

但就我们的生产流程来看,元器件的包装被打开后无法在相应时间内完成安装、焊接。为了元器件具有更好的可焊性及避免吸潮后受高温发生“爆米花”现象,需要对BGA器件进行烘烤。烘烤温度一般为125℃,相对湿度≤60%RH(氮气保护),烘烤时间见下表

BGA球焊膏清洗合明科技,微信图片_20210804094048.png

3.2焊膏量


为了得到良好的印刷效果,生产中使用新鲜的焊膏,并且在印刷之前搅拌均匀,印刷位置准确,这些是形成良好焊点的前提条件。同时为了保证BGA焊点的焊接质量及其长期可靠性,焊膏量也是一个重要的影响因素。但是模板厚度及模板开孔大小应满足如下比例要求才能得到良好的脱模效果。

引脚宽度开孔大小/模板厚度≥1.5

开孔面积/侧面积≥0.66

3.3焊接温度曲线


热分对流再焊接温度曲线由预热、保温、回流、冷却四个部分组成。预热区的作用是将印制板预热,保温区的作用是将印制板进一步加热,并且使得焊膏中的助焊剂活化,去除氯化物,使得焊膏能够在焊盘上成分铺展,同时以期使得印制板上所有点的温差最小,回流区焊膏融化,对SMD进行焊接,发生冶金反应,形成可靠连接,冷却区使焊点快速凝固,形成焊点。任何一个温度设定不合理都会导致不良焊点产生。


对于BGA焊点,边缘与中心焊球的温差△T是影响其焊点质量的关键因素。若温差较大,内部焊球得不到充分融化,很容易出现“虚焊”。因此,在进入回流区之前,应使得△T尽量小,最好在5℃以内,这样才能保证所有焊点同时进入熔断状态;在液相线以上时间合理,不能过长或过短,最好有一个“平顶”,在保证所有焊球△T尽量小的同时使焊球充分熔化,这样才能形成可靠的冶金连接。


冷却速率也是影响焊点质量的一个重要因素。冷却速率过快会形成扰动焊点,使焊点产生裂纹;冷却速率过慢则会使焊点表面粗糙,晶粒粗大,可靠性差。


应根据不同的印制板厚度、组装密度、器件特点分别制定不同的温度曲线。


3.4 汽相焊


对于一些特殊的产品,尤其在军品中,随着集成度的提高,布线密度的增加,印制板层数增多,这种“功能强大”的印制板热容量很大。此时,热风对流再流焊接显得有点力不从心,因为在同一块印制板上不同的地方的器件温差比较大,会出现过热或过冷的现象。并且挡需要改变温度曲线的时候,热风对流系统需要较长的转换时间才能达到稳定状态。而汽相再流焊则不存在这些问题,它不需要调节温度曲线,印制板的最高温度与所用液体的沸点相当,比较适合大热容量组件的焊接。


3.5 可制造性分析


可借助Valor软件对设计图纸进行可制造性分析,使设计与生产良好衔接,同时又做到工艺优化,使得生产制造更加科学合理化,从而提高良品率。


4.BGA返修


BGA焊点“虚焊”的返修方法有如下两种。


4.1非破坏性返修


针对这种典型的“BG器件外力按压有信号,否则没有信号”现象,我们认为可能是少量的焊点成形不好,有缺陷。因此从器件四周注入助焊剂,然后对其进行重熔。这种方法有时会使上述“虚焊”现象消失,能够满足电气性能的要求。


4.2破坏性返修


通常采用的返修方法即将有“虚焊”的BGA器件加热强行拆下来,然后进行植球或换新的器件进行焊接


以上两种返修过程一般在BGA返修台完成,但若返修台的加热系统不能进行准确的充分加热的话,则需要采用回流焊炉来完成返修,但付出的代价是整块板上的所有器件再进行一次热冲击,可能会对一些器件造成损坏。总之,返修后不一定能完全保证产品质量。


5.小结


总之,BGA器件比一般的表面贴装器件的焊接工艺复杂,影响焊点质量的因素也较多。本文通过对典型“虚焊”缺陷进行原因分析认为:焊接温度曲线、焊膏量、器件及印制板焊盘表面状况以及印制板设计等因素对“虚焊”的产生有较大影响。


随着电路设计的更加集成化,印制板组装密度将会更高,会使用更多的uBGA及CSP。因此在以后的实际生产中,要从上述提出的改进方法入手,综合考虑各方面因素,严格控制组装工艺,追求零缺陷、无返修的最终目标。

6. BGA清洗 及清洗剂推荐

BGA清洗前后照片,合明科技水基清洗剂W3000D-2.png



针对BGA 焊膏焊料焊接残留物清洗 推荐合明科技【碱性】水基清洗剂 型号W3000D-2

 

W3000D-2 是针对 PCBA(印刷线路板组装)焊后清洗开发的一款浓缩型环保水基清洗剂。主要用于清除电子组装件PCBA、功率 LED 器件及引线框架型分立器件上的锡膏或者助焊剂残留物,特别适用于针对细间距 和低底部间隙元器件的清洗应用。该产品采用我公司专利技术研发,清洗力强,气味清淡,不含卤素,使用 安全,其低泡沫的特性使其适用于超声波清洗、喷淋清洗及浸泡清洗等多种清洗工艺。清洗时可根据 PCBA 残留物的状态,将本品按一定比例稀释后再进行使用. 

 

该产品温和配方对FPC等板材所用敏感金属及电子元器件等均具有优良的材料兼容性,是一款非常理想的浓缩型环保水基清 洗剂。随着电子产品微小、轻量、精密化的发展,电子清洗在制造业中变的越来越重要,相对于传统的清洗 剂,W3000D-2 水基清洗剂彻底消除了火灾安全隐患,更能满足不断提升的环保物质等级要求和高洁净度、 高精密的清洗要求,顺应了未来清洗业发展的方向.

 

水基清洗剂W3000D-2优点介绍:

1.    用去离子水按一定比例稀释后不易起泡,可以应用在超声波和喷淋清洗设备中。无闪点,使用安全,不需要额外的防爆措施。 

2.    清洗负载能力高,具有超长的使用寿命,维护成本低。 

3.    适用于具有高精、高密、高洁净清洗要求的精密电子零件的清洗,特别适用于针对细间距和低底部间隙元器件的清洗应用。

4.    配方温和,对敏感金属合金、电子元器件、丝印、条码、二维码等具有良好的材料兼容性。 

5.    对各种类型的助焊剂和锡膏残留具有良好的清洗效果,能有效提高后续绑线工艺的品质,使得功率 LED 器件具有更高的光转换效率和更长的使用寿命。 

6.    清洗温度范围广,根据残留顽固情况可选择常温或加温清洗(25~50℃)。 

7.    不含卤素,使用安全环保




合明科技摄像模组感光芯片CMOS晶片镜片清洗剂,LED芯片焊后助焊剂锡膏清洗剂、CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。


【阅读提示】

以上为本公司一些经验的累积,因工艺问题内容广泛,没有面面俱到,只对常见问题作分析,随着电子产业的不断更新换代,新的工艺问题也不断出现,本公司自成立以来不断的追求产品的创新,做到与时俱进,熟悉各种生产复杂工艺,能为各种客户提供全方位的工艺、设备、材料的清洗解决方案支持。

【免责声明】

1. 以上文章内容仅供读者参阅,具体操作应咨询技术工程师等;

2. 内容为作者个人观点, 并不代表本网站赞同其观点和对其真实性负责,本网站只提供参考并不构成投资及应用建议。本网站上部分文章为转载,并不用于商业目的,如有涉及侵权等,请及时告知我们,我们会尽快处理

3. 除了“转载”之文章,本网站所刊原创内容之著作权属于合明科技网站所有,未经本站之同意或授权,任何人不得以任何形式重制、转载、散布、引用、变更、播送或出版该内容之全部或局部,亦不得有其他任何违反本站著作权之行为。“转载”的文章若要转载,请先取得原文出处和作者的同意授权;

4. 本网站拥有对此声明的最终解释权。

上门试样申请 136-9170-9838 top