banner
关于合明 资讯中心
  • SMT元器件封装工艺清洗合明科技分享:SMT元器件封装基础知识

    2020-03-11

    SMT元器件封装工艺清洗合明科技分享:SMT元器件封装基础知识

    SMT元器件封装工艺清洗合明科技分享:SMT元器件封装基础知识封装,就是指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接·封装形式是指安装半导体集成电路芯片用的外壳。它不仅起着安装、固定、密封、保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连接,从而实现内部芯片与外部电路的连接。因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降。另一方面,封装后的芯片也更便于安装和运输。封装主要分为DIP双列直插和SMD贴片封装两种。从结构方面,封装经历了最早期的晶体管TO(如TO-89、TO92)封装发展到了双列直插封装,随后由PHILIP公司开发出了SOP小外型封装,以 后逐渐派生出SOJ(J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、 SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。文章来源于SMT技术分享 ,作者wenjing5411836SMT封装/电子组装件/PCBA组件电源板需要清洗的原因分析一、PCBA的污染 污染物的定义为任何使PCBA的化学、物理或电气性能降低到不合格水平的表面沉积物、杂质、夹渣以及被吸附物。主要有以下几个方面:1、构成PCBA的元器件、PCB的本身污染或氧化等都会带来PCBA板面污染;2、生产制造过程中助焊剂产生的残留物,也是主要污染物;3、焊接过程中产生的手印记、链爪和治具印记,及其他类型的污染物,如堵孔胶,高温胶带,手迹和飞尘等;4、工作场所的尘埃、水及溶剂蒸气、烟雾、微小颗粒有机物,以及静电引起的带电粒子附着于PCBA的污染。二、污染的危害污染可能直接或间接引起PCBA潜在的风险,诸如:1、残留物中的有机酸可能对PCBA造成腐蚀;2、残留物中的电离子在通电过程中,因焊点之间的电位差造成电迁移,使产品短路失效;3、残留物影响涂覆效果;4、经过时间和环境温度的变化,出现涂层龟裂、翘皮,从而引起可靠性问题。三、清洗的必要性1、外观和电性能要求 PCBA的污染物最直观的影响是PCBA的外观,如果在高温高湿的环境中放置或使用,可能出现残留物吸潮发白现象。由于组件中大量使用无引线芯片、微型BGA、芯片级封装(CSP)和01005等,元件和电路板之间的距离缩小,尺寸微型化,组装密度也越来越大。如果卤化物藏在元件下面清洗不到的地方,局部清洗可能造成因卤化物释放而带来灾难性的后果。2、三防漆涂覆需要 在进行表面涂覆之前,没有清洗掉的树脂残留物会导致保护层分层或出现裂纹;活性剂残留物可能引起涂层下面出现电化学迁移,导致涂层破裂保护失效。研究表明,通过清洗可以增加50%涂覆粘结率。3、免清洗也需要清洗 按照现行标准,免清洗一词的意思是说电路板的残留物从化学的角度看是安全的, 不会对电路板产线任何影响,可以留在电路板上。检测腐蚀、SIR、电迁移还有其他专门的检测手段主要是用来确定卤素/卤化物含量,进而确定免清洗的组装件在完成组装后的安全性。 不过,即使使用固含量低的免清洗助焊剂,仍会有或多或少的残留物,对于可靠性要求高的产品来讲,在电路板是不允许任何残留物或者污染物。对军事应用来讲,即使是免洗电子组装件都规定必须要清洗。以上一文,仅供参考! 欢迎来电咨询合明科技SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • FPC电路板清洗剂合明科技分享:FPC线路板的特征介绍

    2020-03-13

    FPC电路板清洗剂合明科技分享:FPC线路板的特征介绍

    FPC电路板清洗剂合明科技分享:FPC线路板的特征介绍25微米的孔壁铜厚好处:增强可靠性,包括改进z轴的耐膨胀能力。吹孔或除气、组装过程中的电性连通性问题(内层分离、孔壁断裂),或在实际使用时在负荷条件下有可能发生故障。IPCClass2(大多数工厂所采用的标准)规定的镀铜要少20%。无焊接修理或断路补线修理好处:完美的电路可确保可靠性和安全性,无维修,无风险如果修复不当,就会造成电路板断路。即便修复‘得当’,在负荷条件下(振动等)也会有发生故障的风险,从而可能在实际使用中发生故障。超越IPC规范的清洁度要求好处:提高PCB清洁度就能提高可靠性。线路板上的残渣、焊料积聚会给防焊层带来风险,离子残渣会导致焊接表面腐蚀及污染风险,从而可能导致可靠性问题(不良焊点/电气故障),并最终增加实际故障的发生概率。严格控制每一种表面处理的使用寿命好处:焊锡性,可靠性,并降低潮气入侵的风险由于老电路板的表面处理会发生金相变化,有可能发生焊锡性问题,而潮气入侵则可能导致在组装过程和/或实际使用中发生分层、内层和孔壁分离(断路)等问题。使用国际知名基材–不使用“当地”或未知品牌好处:提高可靠性和已知性能机械性能差意味着电路板在组装条件下无法发挥预期性能,例如:膨胀性能较高会导致分层、断路及翘曲问题。电特性削弱可导致阻抗性能差。覆铜板公差符合IPC4101ClassB/L要求好处:严格控制介电层厚度能降低电气性能预期值偏差。不这样做的风险电气性能可能达不到规定要求,同一批组件在输出/性能上会有较大差异。界定阻焊物料,确保符合IPC-SM-840ClassT要求好处:NCAB集团认可“优良”油墨,实现油墨安全性,确保阻焊层油墨符合UL标准。劣质油墨可导致附着力、熔剂抗耐及硬度问题。所有这些问题都会导致阻焊层与电路板脱离,并最终导致铜电路腐蚀。绝缘特性不佳可因意外的电性连通性/电弧造成短路。界定外形、孔及其它机械特征的公差好处:严格控制公差就能提高产品的尺寸质量–改进配合、外形及功能组装过程中的问题,比如对齐/配合(只有在组装完成时才会发现压配合针的问题)。此外,由于尺寸偏差增大,装入底座也会有问题。NCAB指定了阻焊层厚度,尽管IPC没有相关规定好处:改进电绝缘特性,降低剥落或丧失附着力的风险,加强了抗击机械冲击力的能力–无论机械冲击力在何处发生!阻焊层薄可导致附着力、熔剂抗耐及硬度问题。所有这些问题都会导致阻焊层与电路板脱离,并最终导致铜电路腐蚀。因阻焊层薄而造成绝缘特性不佳,可因意外的导通/电弧造成短路。界定了外观要求和修理要求,尽管IPC没有界定好处:在制造过程中精心呵护和认真仔细铸就安全。多种擦伤、小损伤、修补和修理–电路板能用但不好看。除了表面能看到的问题之外,还有哪些看不到的风险,以及对组装的影响,和在实际使用中的风险呢?对塞孔深度的要求好处:高质量塞孔将减少组装过程中失败的风险。塞孔不满的孔中可残留沉金流程中的化学残渣,从而造成可焊性等问题。而且孔中还可能会藏有锡珠,在组装或实际使用中,锡珠可能会飞溅出来,造成短路。PetersSD2955指定可剥蓝胶品牌和型号好处:可剥蓝胶的指定可避免“本地”或廉价品牌的使用。劣质或廉价可剥胶在组装过程中可能会起泡、熔化、破裂或像混凝土那样凝固,从而使可剥胶剥不下来/不起作用。NCAB对每份采购订单执行特定的认可和下单程序好处:该程序的执行,可确保所有规格都已经确认。如果产品规格得不到认真确认,由此引起偏差可能要到组装或最后成品时才发现,而这时就太晚了。不接受有报废单元的套板好处:不采用局部组装能帮助客户提高效率。带有缺陷的套板都需要特殊的组装程序,如果不清楚标明报废单元板(x-out),或不把它从套板中隔离出来,就有可能装配这块已知的坏板,从而浪费零件和时间。文章来源:电子制造工艺技术PCBA/FPC/软硬结合板清洗的必要性外观和电性能要求 PCBA的污染物最直观的影响是PCBA的外观,如果在高温高湿的环境中放置或使用,可能出现残留物吸潮发白现象。由于组件中大量使用无引线芯片、微型BGA、芯片级封装(CSP)和01005等,元件和电路板之间的距离缩小,尺寸微型化,组装密度也越来越大。如果卤化物藏在元件下面清洗不到的地方,局部清洗可能造成因卤化物释放而带来灾难性的后果。三防漆涂覆需要 在进行表面涂覆之前,没有清洗掉的树脂残留物会导致保护层分层或出现裂纹;活性剂残留物可能引起涂层下面出现电化学迁移,导致涂层破裂保护失效。研究表明,通过清洗可以增加50%涂覆粘结率。免清洗也需要清洗 按照现行标准,免清洗一词的意思是说电路板的残留物从化学的角度看是安全的, 不会对电路板产线任何影响,可以留在电路板上。检测腐蚀、SIR、电迁移还有其他专门的检测手段主要是用来确定卤素/卤化物含量,进而确定免清洗的组装件在完成组装后的安全性。 不过,即使使用固含量低的免清洗助焊剂,仍会有或多或少的残留物,对于可靠性要求高的产品来讲,在电路板是不允许任何残留物或者污染物。对军事应用来讲,即使是免洗电子组装件都规定必须要清洗。清洁程度要求 电子制造商面临着对生产可靠的硬件所需的清洁等级程度难以抉择。“多干净才算足够干净”这个问题给越来越窄的导线和线路带来更多的挑战。在工业中某一领域可接受的洁净度(如一个玩具进行了SMT波峰焊后),对于另外的领域或许就是不可接受(例如倒装芯片封装)。 很多的工艺专家们可能对清洁度并不十分了解,挑战仍然存在于与残留相关的某个或者某些长期可靠性方面的问题,或者是决定残留对硬件的功能性影响有多大。需要考虑的有如下几方面的因素:1、终端使用环境(航天、医疗、军事、汽车、信息科技等)2、产品的设计/服役周期(90天、3年、20年、50年、保质期+1天)3、涉及的技术(高频、高阻抗、电源)4、失效现象与标准所定义的终端产品1、2、3级相对应的产品(例如: 移动电话、心率调整器)。 以上一文,仅供参考! 欢迎来电咨询合明科技FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • CMOS焊接后清洗剂合明科技分享:CMOS图像传感器市场\产业全景图

    2020-03-16

    CMOS焊接后清洗剂合明科技分享:CMOS图像传感器市场\产业全景图

    CMOS焊接后清洗剂合明科技分享:CMOS图像传感器市场\产业全景图图像传感器作为摄像头模组的核心部件,广泛应用于智能手机、汽车、安防监控、航空航天等领域。我国拥有全球最大的图像传感器市场,然而在高端消费类电子领域的市场份额几乎被索尼和三星占据。随着智能手机采用多摄方案的增加以及IoT、AI、ADAS等技术带动摄像头应用场景的拓展,市场对CIS需求日益旺盛。我国应紧抓市场机遇和我国巨大的市场优势,实现在图像传感器领域的腾飞。CMOS图像传感器市场火热作为电子设备的“眼睛”,图像传感器近年来成为市场的焦点,成为半导体行业最炙手可热的领域之一。目前,CCD图像传感器和CMOS图像传感器(CIS)是被普遍采用的两种图像传感器。CCD图像传感器具有量子效率高、噪声低等优点被应用于广播电视和工业监测等领域。随着超大规模集成电路技术和CMOS制造工艺水平的提高,CIS由于尺寸小、低成本、功耗低、集成度高等诸多优点在民用消费电子市场逐渐取代传统的CCD图像传感器,带动了图像传感器市场的发展。根据WSTS数据统计,2019年全球图像传感器销售规模达到193.2亿美元,其中,CIS贡献188.1亿美元,同比增长26.3%,CIS已成为半导体产业中增长最快的产品之一。索尼三星占据7成全球市场CIS产业链主要有两种模式,一种是以索尼和三星为代表的IDM模式,另一种是以豪威科技、格科微等为代表的Fabless模式,豪威、格科微负责设计,芯片制造委托给台积电、中芯国际生产,封测交给晶方、华天科技等企业。此外还存在安森美、意法半导体等轻晶圆厂(fab-lite)模式,其自己只生产特定产品,其他均委托给下游环节企业生产及封测。目前,格科微拟在上海临港新片区投资建设12英寸CIS集成电路特色工艺研发与产业化项目,届时有望成为我国CIS领域的IDM企业。在全球CIS市场竞争格局中,据IHS Markit数据显示,在CIS市场份额上,目前索尼以占比49.2%的绝对优势位于霸主地位,三星以19.8% 位居第二。其中,索尼长期植根于数码摄像技术,得益于带给市场的高像素、高感光、新结构的CIS,其摄像头芯片一直是中高端旗舰手机的标配。三星背靠其集团资源,CIS市占率位列第二,目前由于下游需求旺盛,相关DRAM产能正在转换生产CIS,以扩大其市场份额。我国在CIS领域也涌现出众多优秀的企业。例如,豪威科技在全球车载CIS领域市占率排名第二。格科微在国内CIS出货量位列第一。思比科CIS在国内中低端智能手机市场占有较高份额。思特威在全球率先推出基于电压域架构和Stack BSI工艺的全局曝光CIS芯片,在视频监控领域处于行业领先地位。比亚迪微电子在CIS领域也表现突出。目前,豪威科技和思比科已被韦尔股份收购,成为其子公司。国内企业正在依托自主核心技术,不断扩大在中低端产品的市场份额,同时豪威科技2月份发布6400万像素的CIS(OV64C),正在积极向高端市场迈进。全球市场迎来三大机遇一是智能手机领域带来的机遇。手机是CIS最大的终端用户市场。据Counterpoint Research统计,2019年全球智能手机出货量前十中,国产厂商占七位(包括华为、小米、OPPO、VIVO、联想、Realme、TECNO)。其中,华为以2.385亿部成为全球第二,小米以1.245亿部位居全球第四,OPPO以1.198亿部位居全球第五,国产手机厂商给CIS带来了巨大的市场需求。此外,由于消费者对高质量摄像需求的提高,手机摄像头在光学领域不断创新与升级,智能手机采用多摄配置的方案逐渐提升。三星2月份发布的Galaxy S20 Ultra在摄像头配置上拥有五摄(后四+前一)的解决方案。其中“后四+前一”的五摄具体配置包括108MP主摄+12MP超广角+48MP长焦+ToF镜头的后置四摄和40MP的前置单摄。小米2月份发布的小米10 Pro在拍照方面拥有后置108MP主摄+20MP超广角+12MP人像镜头+8MP长焦四摄和前置20M单摄的5摄配置。二是汽车电子领域带来的机遇。随着传统汽车面向更加智能、安全的发展趋势,以及未来新车使用先进驾驶辅助系统(ADAS)和自动驾驶(AD)的解决方案的推进,汽车电子已成为CIS增长速度最快的细分市场。传统汽车为辅助日常停车,安装倒车影像已成为主流。此外,随着ADAS技术在汽车上应用的推进,更多的传感器将被使用,以Tesla为例,其在汽车上装配有8个摄像头。因此,作为感知周围图像信息的摄像头,势必会在汽车领域迎来新一轮增长。三是安防监控领域带来的机遇。据统计,2020年我国安防市场(包括安防产品、安防工程和报警运营服务及其他)规模约8千亿元,远远领先国外其他地区。其中,安防监控领域市场份额相对较大。摄像头作为安防监控领域的重要组成部分,使得安防监控领域给CIS提供了巨大的应用场景。此外,随着5G、AI、物联网等技术的发展,安防监控行业正在从“传统”到“智慧”升级,进而给CIS市场注入了新的活力。我国产业发展面临两大难题一是先进技术积累薄弱,高端产品供应不足。目前国内CIS企业的产品主要应用于中低端领域。在旗舰和高端机型手机等高端消费类电子产品的主摄上,索尼和三星在市场上形成绝对垄断,我国CIS企业在高端市场几乎没有话语权。索尼、三星等国际一流厂商在图像传感器领域积累多年,索尼于1996年开始生产CIS并于2000年推出了首个CIS(IMX001)。国内企业由于起步较晚,关键核心技术积累不占据优势,导致国产高性能成像CIS缺乏。二是产业链协作不足,协同创新有待加强。目前,索尼和三星是CIS领域的绝对技术引领者和市场占有者。它们的运作模式均属于IDM型,这使得产品的设计研发和工艺制造可以紧密结合、同时发展。对于具有特殊制程的CIS,先进技术的发展使得电路设计和工艺设计的紧密结合尤为重要。目前,我国在CIS领域还没有形成IDM模式的企业,产业链上下游环节协同不强,导致我国CIS产业链协同创新不足,使得设计者设计产品时不能很好考虑到工艺设计,引起企业核心竞争力不足。三点建议助力国内产业发展一是积极布局前沿技术,实现关键技术引领。积极通过开发先进材料、先进工艺等途径生产出高性能图像传感器。布局研发基于量子点、有机光导膜(Organic-Photoconductive-Film,OPF)材料、石墨烯-CMOS集成技术的图像传感器,不断推进相关前沿技术的研发与应用,实现我国企业在图像传感器领域的技术引领。二是促进产业链上下游企业深度合作,推进产业链协同共赢。目前,索尼和三星是CIS领域绝对的技术引领者。索尼开发了背照式(BSI)CIS技术和堆栈式(Stack)CIS技术,并率先生产出基于Cu-Cu连接技术的CIS。三星引入像素隔离(ISOCELL)技术来优化图像传感器的像素结构,可以发现它们的运作模式均属于IDM模式。考虑到国内CIS厂商体量偏小,建议国内厂商设计团队与晶圆厂之间加强沟通协调,促进深度合作,可通过建立虚拟IDM的方式,加强产业链协作水平、推进产业链协同共赢。三是紧抓全球市场机遇和我国市场优势,寻求产品的差异化应用场景。随着未来汽车不断地采用ADAS和AD的解决方案,汽车电子领域已成为CIS增长速度最快的细分市场。此外,CIS在安防、医疗等场景不断渗透。我国厂商应紧抓市场机遇,利用好我国巨大的市场优势拓展其在汽车电子等领域的应用以及深耕无人机、智能机器人、AR/VR等细分领域,不断丰富产品种类,寻求产品的差异化应用场景。来源:半导体行业观察以上一文,仅供参考! 欢迎来电咨询合明科技CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 合明科技浅谈:LED芯片倒装工艺锡膏钢网清洗之水基清洗技术

    2020-03-18

    合明科技浅谈:LED芯片倒装工艺锡膏钢网清洗之水基清洗技术

    【原创】合明科技浅谈:LED芯片倒装工艺锡膏钢网清洗之水基清洗技术 Led芯片倒装工艺制程应用在led芯片封装上,以期获得更高的生产效率,更小更轻薄的产品特征,大幅提高led产品的产能,降低生产制造成本,提高市场竞争力,倒装必然是led芯片封装的方向。技术及工艺制成的升级换代,同时也给实际生产操作带来了挑战。倒装芯片使用锡膏钢网印刷锡膏的方式,与传统的SMT钢网印刷的锡膏方式有很大的不同,由于焊点微小,通常以7号粉、8号粉锡膏为代表性,钢网印刷孔尺寸往往只有50至100微米之间,为了保障锡膏的印刷品质和最终焊接的可靠性,锡膏钢网的干净度、印刷可靠性必然成为关键技术的关注点和保障点。(图片来源于网络)一、制定钢网清洗干净度规范和技术要求倒装芯片锡膏钢网清洗干净度,在现行的标准范畴内未有充分的指引和指标,同时又与传统的SMT印刷钢网又有很大的不同,技术要求要比SMT钢网高得多,为保证倒装芯片锡膏的印刷品质,必须对钢网允许的污垢形态和指标进行准确的技术定义,方能在生产实践中按照标准要求进行执行。可参照SMT制程钢网干净度行业规范的要求,比如,每张钢网允许孔内不得多于3颗锡粉,一共不得多于10个孔。二、清洗作业制成和方法为达到lED倒装芯片锡膏钢网的干净度要求,必须使用超声波和喷淋联合作业的方式,进行清洗、漂洗、干燥的全工艺制成,方能满足高规格的技术标准要求,HM838超声波喷淋钢网清洗设备配合上对应的水基清洗剂,可实现倒装芯片锡膏印刷钢网的完整清洗工艺,彻底解决微小钢网孔的清洗难题,从而保障倒装芯片焊接的可靠性。【LED倒装小知识】【倒装LED芯片技术行业应用分析】近年,世界各国如欧洲各国、美国、日本、韩国和中国等皆有LED照明相关项目推行。其中,以我国所推广的“十城万盏”计划最为瞩目。路灯是城市照明不可缺少的一部分,传统路灯通常采用高压钠灯或金卤灯,这两种光源最大的特点是发光的电弧管尺寸小,可以产生很大的光输出,并且具有很高的光效。但这类光源应用在道路灯具中,只有约40%的光直接通过玻璃罩到达路面,60%的光通过灯具反射器反射后再从灯具中射出。因此目前传统灯具基本存在两个不足,一是灯具直接照射的方向上照度很高,在次干道可达到50Lx以上,这一区域属明显的过度照明,而两个灯具的光照交叉处的照度仅为灯下中心位置的照度的20%-40%,光分布均匀度低;二是此类灯具的反射器效率一般仅为50%-60%,因此在反射过程中有大量的光损失,所以传统高压钠灯或金卤灯路灯总体效率在70-80%,均匀度低,且有照度的过度浪费。另外,高压钠灯和金卤灯使用寿命通常小于6000小时,且显色指数小于30;LED有着高效、节能、寿命长(5万小时)、环保、显色指数高(>75)等显著优点,如何有效的将LED应用在道路照明上成为了LED及路灯厂家现时最热门的话题。一般而言,根据路灯的使用环境对LED的光学设计、寿命保障、防尘和防水能力、散热处理、光效等方面均有严格的要求。作为LED路灯的核心,LED芯片的制造技术和对应的封装技术共同决定了LED未来在照明领域的应用前景。【LED倒装小知识】【未来LED的芯片发展方向】目前高功率的LED路灯主要通过“多颗芯片金线串并联”和“多颗LED通过PCB串并联”的方式来实现。前者由于芯片之间需要进行光电参数的匹配,且多颗金线串并联封装的工艺不可靠性和低封装良率,一直未被广泛使用。而后者则需要对多颗LED进行严格的光电参数匹配,且光学设计困难。因此,“芯片级”模组化产品是未来LED芯片的一个重要发展方向。芯片级LED模组,单颗芯片间通过基板内的电路实现串并联连接,解决传统模组集成依靠金线进行串并联的问题,大幅度提升产品良品率,极大地降低了整个封装流程的生产成本,严格控制集成模组芯片的各芯片间的参数差异,保证模组芯片长期使用的可靠性,同时模组芯片可以作为单元,进行串并联拼接,形成更大功率的模组。利用倒装技术,可以在“芯片级”上实现不同尺寸、颜色、形状、功率的多芯片集成,实现超大功率模组产品,这是任何其它的芯片技术不能达到的优势。以上一文,仅供参考! 欢迎来电咨询合明科技CMOS焊接后清洗剂、FPC电路板清洗剂、SMT元器件封装工艺清洗剂、微波组件助焊剂松香清洗剂、车用IGBT芯片封装水基清洗方案,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 芯片焊前锡膏清洗剂合明科技分享:芯片测试相关知识科普介绍

    2020-03-20

    芯片焊前锡膏清洗剂合明科技分享:芯片测试相关知识科普介绍

    芯片焊前锡膏清洗剂合明科技分享:芯片测试相关知识科普介绍1测试在芯片产业价值链上的位置如下面这个图表,一颗芯片最终做到终端产品上,一般需要经过芯片设计、晶圆制造、晶圆测试、封装、成品测试、板级封装等这些环节。在整个价值链中,芯片公司需要主导的环节主要是芯片设计和测试,其余的环节都可以由相应的partner来主导或者完成。图(1)2测试如何体现在设计的过程中 下图表示的是设计公司在进行一个新的项目的时候的一般流程,从市场需求出发,到产品tape out进行制造,包含了系统设计、逻辑设计、电路设计、物理设计,到最后开始投入制造。最下面一栏标注了各个设计环节中对于测试的相关考虑,从测试架构、测试逻辑设计、测试模式产生、到各种噪声/延迟/失效模式综合、进而产生测试pattern,最后在制造完成后进行测试,对测试数据进行分析,从而分析失效模式,验证研发。所以,测试本身就是设计,这个是需要在最初就设计好了的,对于设计公司来说,测试至关重要,不亚于电路设计本身。图(2)设计公司主要目标是根据市场需求来进行芯片研发,在整个设计过程中,需要一直考虑测试相关的问题,主要有下面几个原因:1) 随着芯片的复杂度原来越高,芯片内部的模块越来越多,制造工艺也是越来越先进,对应的失效模式越来越多,而如何能完整有效地测试整个芯片,在设计过程中需要被考虑的比重越来越多。2) 设计、制造、甚至测试本身,都会带来一定的失效,如何保证设计处理的芯片达到设计目标,如何保证制造出来的芯片达到要求的良率,如何确保测试本身的质量和有效,从而提供给客户符合产品规范的、质量合格的产品,这些都要求必须在设计开始的第一时间就要考虑测试方案。3) 成本的考量。越早发现失效,越能减少无谓的浪费;设计和制造的冗余度越高,越能提供最终产品的良率;同时,如果能得到更多的有意义的测试数据,也能反过来提供给设计和制造端有用的信息,从而使得后者有效地分析失效模式,改善设计和制造良率。 3测试的各种对于芯片来说,有两种类型的测试,抽样测试和生产全测。抽样测试,比如设计过程中的验证测试,芯片可靠性测试,芯片特性测试等等,这些都是抽测,主要目的是为了验证芯片是否符合设计目标,比如验证测试就是从功能方面来验证是否符合设计目标,可靠性测试是确认最终芯片的寿命以及是否对环境有一定的鲁棒性,而特性测试测试验证设计的冗余度。这里我们主要想跟大家分享一下生产全测的测试,这种是需要100%全测的,这种测试就是把缺陷挑出来,分离坏品和好品的过程。这种测试在芯片的价值链中按照不同阶段又分成晶圆测试和最终测试(FT,也叫封装测试或者成品测试),就是上面图(1)中的红色部分。 测试相关的各种名词:ATE-----------Automatic Test Equipment,自动化测试设备,是一个高性能计算机控制的设备的集合,可以实现自动化的测试。Tester---------测试机,是由电子系统组成,这些系统产生信号,建立适当的测试模式,正确地按顺序设置,然后使用它们来驱动芯片本身,并抓取芯片的输出反馈,或者进行记录,或者和测试机中预期的反馈进行比较,从而判断好品和坏品。Test Program---测试程序,测试机通过执行一组称为测试程序的指令来控制测试硬件DUT-----------Device Under Test,等待测试的器件,我们统称已经放在测试系统中,等待测试的器件为DUT。 晶圆、单颗die和封装的芯片----如下面图(3)所示图(3)Wafer就是晶圆,这个由Fab进行生产,上面规则地放着芯片(die),根据die的具体面积,一张晶圆上可以放数百数千甚至数万颗芯片(die)。Package Device就是封装好的芯片,根据最终应用的需求,有很多种形式,这个部分由芯片产业价值链中的封装工厂进行完成。 测试系统的基本工作机制:图(4) 对测试机进行编写程序,从而使得测试机产生任何类型的信号,多个信号一起组成测试模式或测试向量,在时间轴的某一点上向DUT施加一个测试向量,将DUT产生的输出反馈输入测试机的仪器中测量其参数,把测量结果与存储在测试机中的“编程值”进行比较,如果测量结果在可接受公差范围内匹配测试机中的“编程值”,那么这颗DUT就会被认为是好品,反之则是坏品,按照其失效的种类进行记录。 晶圆测试(wafer test,或者CP-chip probering):就是在图(3)中的晶圆上直接进行测试,下面图中就是一个完整的晶圆测试自动化系统。Prober--- 与Tester分离的一种机械设备,主要的作用是承载wafer,并且让wafer内的一颗die的每个bond pads都能连接到probe card的探针上,并且在测试后,移开之前的接触,同时移动wafer,换另外的die再一次连接到probe card的探针上,并记录每颗die的测试结果。图(4)Probe Card---乃是Tester与wafer上的DUT之间其中一个连接介面,目的在连接Tester Channel 与待测DUT。大部分为钨铜或铍铜,也有钯等其他材质;材质的选择需要高强度、导电性及不易氧化等特性,样子如下面图(5)所示。图(5) 当 probe card 的探针正确接触wafer内一顆 die的每个bond pads后, 送出start信号通过Interface给tester开始测试, tester完成测试送回分类讯号 ( End of test) 给Prober, 量产時必須 tester 与 prober 做连接(docking) 才能测试。 最终测试(FT,或者封装测试):就是在图(3)中的Package Device上进行测试.下图就是一个完整的FT的测试系统。对比wafer test,其中硬件部分,prober换成了handler,其作用是一样的,handler的主要作用是机械手臂,抓取DUT,放在测试区域,由tester对其进行测试,然后handler再根据tester的测试结果,抓取DUT放到相应的区域,比如好品区,比如坏品1类区,坏品2类区等。图(6) 而probe card则换成了load board,其作用是类似的,但是需要注意的是load board上需要加上一个器件—Socket,这个是放置package device用的,每个不同的package种类都需要不同的socket,如下面图(7)所示,load board上的四个白色的器件就是socket。图(7)Handler 必须与 tester 相结合(此动作叫 mount 机)及接上interface才能测试, 动作为handler的手臂将DUT放入socket,然后 contact pusher下压, 使 DUT的脚正确与 socket 接触后, 送出start 讯号, 透过 interface 给 tester, 测试完后, tester 送回 binning 及EOT 讯号; handler做分类动作。4如何进行一个产品的测试开发各种规格书:通常有三种规格书,设计规格书、测试规格书、产品规格书。设计规格书,是一种包含新电路设计的预期功能和性能特性的定义的文档,这个需要在设计项目启动阶段就要完成,通常由市场和设计人员共同完成,最终设计出来的产品的实际功能和性能需要和设计规格书的规定进行比较,以确认本次设计项目的完成度。测试规格书,其中包含详细的逐步测试程序、条件、方法,以充分测试电路,通常由设计人员和产品验证工程师在设计过程中完成。产品规格书,通常就是叫做datasheet,由设计公司对外发布的,包含了各种详细的规格、电压、电流、时序等信息。 测试计划书:就是test plan,需要仔细研究产品规格书,根据产品规格书来书写测试计划书,具体的需要包含下面这些信息:a)DUT的信息,具体的每个pad或者pin的信息,CP测试需要明确每个bond pads的坐标及类型信息,FT测试需要明确封装类型及每个pin的类型信息。b)测试机要求,测试机的资源需求,比如电源数量需求、程序的编写环境、各种信号资源数量、精度如何这些,还需要了解对应的测试工厂中这种测试机的数量及产能,测试机费用这些。c)各种硬件信息,比如CP中的probe card, FT中的load board的设计要求,跟测试机的各种信号资源的接口。d)芯片参数测试规范,具体的测试参数,每个测试项的测试条件及参数规格,这个主要根据datasheet中的规范来确认。类型与下面图(8)这样图(8) e)测试项目开发计划,规定了具体的细节以及预期完成日期,做到整个项目的可控制性和效率。 测试项目流程:桃芯科技目前量产的是BLE的SOC产品,里面包含了eflash、AD/DA、 LDO/BUCK、RF等很多模块,为了提供给客户高品质的产品,我们针对每个模块都有详细的测试,下面图(9)是我们的大概的项目测试流程: 图(9)Open/Short Test: 检查芯片引脚中是否有开路或短路。DC TEST: 验证器件直流电流和电压参数Eflash TEST: 测试内嵌flash的功能及性能,包含读写擦除动作及功耗和速度等各种参数。Function TEST: 测试芯片的逻辑功能。AC Test: 验证交流规格,包括交流输出信号的质量和信号时序参数。Mixed Signal Test: 验证DUT数模混合电路的功能及性能参数。RF Test: 测试芯片里面RF模块的功能及性能参数。上面我们给大家介绍了芯片的测试目的,原理,以及方法和流程,接下来我们将比较详细的给大家介绍芯片的错误类型,对应的测试策略,以及跟芯片整体质量相关的一些具体测试方法。 1半导体芯片的defects、Faults芯片在制造过程中,会出现很多种不同类型的defects,比如栅氧层针孔、扩散工艺造成的各种桥接、各种预期外的高阻态、寄生电容电阻造成的延迟等等,如下面图(1)所示,大概展示了各种基本的defects。图(1)这些defects单独、或者组合一起,造成了电路的表现不符预期,这就是造成了Faults.而且各种Faults的表现也是不一样的:永久的Faults,就是彻底的坏品,各种不同的条件下都会表现出来,易于测试发现。间或的Faults,时有发生的不符合预期,不是总能发现,需要一定的外部条件刺激。偶然的Faults,只是偶然的,在特定的外部硬件或者工作模式条件下才表现出来。可靠性问题的Faults,这种一般不会表现出来,只会在一些极端条件才会表现出来,比如高低温或者偏压情况下。为了更有效地检测出各种faults、避免浪费更多芯片的资源、节省费用,业界定义了很多种Faults Model,并提供了各种测试方法论。Stuck At Faults工艺制造过程中造成的硬件defects,使得某个节点Stuck At 0或者Stuck At 1, 如下面图(2)所示的一个或非门:输入节点x1发生了Stuck At 0的defect; x1和x2输入了00时候,Q1和Q2断开,Q3和Q4导通, z输出为H,正确;x1和x2输入了01时候,Q1和Q3断开,Q2和Q4导通, z输出为L,正确;x1和x2输入了10时候,此时x1被Stuck At 0了,等同于输入00,结果还是Q1和Q2断开,Q3和Q4导通,z输出为H,错误;至此,通过输入00,01,10就发现了这个defect。这种顺序输入00,01,10,而比较z输出的结果与预期的值进行判断的方法,就是所谓的Function测试。图(2)那对于一个电路,需要生成多少pattern,能达到多少的测试覆盖率呢?下面图(3)就以一个与门为例,说一下生产测试向量及计算测试覆盖率的基本理念。图(3)如上面图示,一个与门,有三个节点a、b、c, 每个节点都有两种fault的情况(Stuck At 0或者1),那么一共就有6种stuck-at faults情况:a0,a1,b0,b1,c0,c1.那么如上面图中列出的,需要输入(1,0),(0,1),(1,1)可以完全测试出所有的6种可能的Stuck-at Faults的情况,测试覆盖率为:可以发现的faults/所有可能的Faults,上面的输入的测试覆盖率为100%。Stuck Open(off)/Short(on) Faults制造过程种造成的晶体管的defects,使得某个晶体管常开或者常闭了,如下面图(4)所示的时一个晶体管发生了Stuck Open(off)的错误了。图(4)如上图,这种Stuck open可以用两组Stuck At的向量进行测试,AB输入从10变换到00,可以检测出这种Stuck Open的fault,也就是说大部分的Stuck Open/Short的faults都是可以通过Stuck At model的测试向量覆盖的。这种通过向量(function)的方式来测试Stuck Open/short,可能需要非常多的测试图形,需要的测试时间和成本都很多。还有一种测量电流的方式,也可以有效的测试一些这种Stuck open/short的faults,但是会节省很多测试时间和测试成本。如下面图(5)上半部分所示,右边的那个P沟道MOS管发生了Stuck short(on)的faults,图的下半部分展示了输入AB的四种不同的情况,当AB输入为00时,看起来这个晶体管表现的正常;但是当AB输入为11时,地和电源间存在一个直接导通的电路,输出端Z的状态是异常的。图(5)此时VDD上的漏电比较大,也可以通过测量VDD上面的电流来判断正误,即IDDQ的测试方法,后面会详细的介绍这种方法。桥接(Bridge Faults)桥接缺陷是由于电路中两个或多个电节点之间短路造成的,而设计中并未设计这种短接。这些短接的节点可能是某一个晶体管的,也可能是几个晶体管之间的,可能处于芯片上同一层,也可能处于不同层。下面图(6)是桥接缺陷的几种图例。图(6)上图中,(a)是因曝光不足导致7条金属线桥接子在一起的情形;(b)是外来颗粒的介入导致4条金属线桥接在一起的情形;(c)是因掩模划伤导致桥接的情形;(d)是1um大小的缺陷造成短路的情形;(e)是金属化缺陷导致2条金属线桥接的情形;(f)则是层间短路情形。上述情形中虽然导致缺陷的原因各有不同,但结果都是桥接。同样的,桥接测试也可以通过电压的方法完成,即run pattern方式,也就是stuck at的模式进行检测,但是电流测试是发现电压测试无法检查的故障的有效方法。下面图(7)表示的是mos管的source和drain桥接了。图(7)上面图中,因为上面的P沟通的MOS管的source和drain桥接了,电源VDD上会有很大的漏电,用电流测试方法,可以很快发现问题。开路故障(Open)开路缺陷是制造工艺不当造成的,物理缺陷中大约40%属于开路缺陷。典型的开路缺陷包括线条断开、线条变细、阻性开路和渐变开路等。如下面图(8)所示:图(8)图中(a)和(b)是电路存在开路的情形,(c)则是造成同时开路和短路缺陷的情形。开路缺陷的形式取决于缺陷的位置及大小。例如,对于栅极开路(一般称为浮栅,floating gate)这种缺陷,在缺陷面积小的情况下,隧道电流仍可流动,但信号的上升和下降时间增加;在缺陷面积大的情况下,输入信号就在栅极形成耦合,形成的浮栅就获得偏压,此电压可能导致晶体管导通,因此开路故障是否可检测,取决于缺陷的面积和位置。开路缺陷不一定都可以用Stuck At的模式检测到,如下面图(9)所示:图(9)上图中,红线部分表示那个mos管的drain与输出开路了,当顺序输入ab为00、01、10、11,从01变换为10的时候,输出Q保持了上面一个状态1,看起来还是正常的,这种情况下,就没有检测出来这个fault。但是如果调整一下输入的向量的顺序为00、01、11、10,就可以发现这个fault。通过IDD的测试方法,也可以测试出一些open缺陷,如下面的图(10)所示图(10)上面红色表示open的缺陷,当输入ABCD为1111时,输出O为0,当输出转为0001时候,在x、y和o之间出现了充放电,会有大电流出现。延迟缺陷(delay faults)在一些高速芯片应用中,延迟缺陷特别重要,这种缺陷有很多原因,比如小面积的open导致某段线路的阻值偏大。如下面图(11)所示:图(11)这个path的delay已经超过了一个clock的间隙,通过stuck At的测试方式,可以检测到这个缺陷。但是有的时候,延迟没有超过clock的间隙,就会造成潜在的失效,在某些情况下,比如硬件变化、外界温度变化等,延迟超过clock的间隙,导致缺陷。这种延迟缺陷,可以通过AC测试的方法进行补充,比如测试上升沿的时间、下降沿的时间等等。2 Pattern向量测试及IDDQ测试方法上面给大家介绍了一下各种失效模式及测试原理。通过Pattern向量测试,加以电流测试为补充,可以有效地测试各种faults。Pattern向量测试的方法设计人员对某种fault模型进行仿真,给出波形向量,通常是VCD格式或者WGL格式,测试人员需要结合时序、电平和逻辑,进行编程,来对芯片输入向量,以检测输出。如下面图(12)表示的就是测试机force给芯片的一段波形。图(12)而芯片在接受到这段输入的波形后,运行特定的逻辑,输出波形如下面图(13),测试机需要在指定的strobe window进行比较输出的与预期的逻辑值的情况,以此来判断DUT是否逻辑功能正常。图(13)下面图(14)是一个AND gate的逻辑测试的例子,实际的输出会有波动,如图中的紫色的波形,在Edge Strobing地方(pattern的timing设定的)采样到此时的输出为High的状态,表明此AND Gate的逻辑功能是正常。图(14)IDDQ测试的方法:CMOS电路具有低功耗的优点,静态条件下由泄露电流引起的功耗可以忽略,仅仅在转换期间电路从电源消耗较大的电流。Q代表静态(quiescent),则IDDQ表示MOS电流静态时从电源获取的电流。IDDQ测试是源于物理缺陷的测试,也是可靠性测试的一部分,其有着测试成本低和能从根本上找出电路的问题(缺陷)所在的特点。即若在电压测试生成中加入少量的IDDQ测试图形,就可以大幅度提高电压测试的覆盖率。即使电路功能正常,IDDQ测试仍可以检测出桥接、短路、栅氧短路等物理缺陷。测试方法如下面图(15)所示图(15)Step1: 给VDD上最高电压,并且tester的电压源设定一个钳制电流,防止电流过大损测试机。Step2: run一个特定condition的pattern,去toggle尽量多的晶体管on。等待 5~10ms。Step3: 量测流过VDD上的电流。Step4: run另外一个特定condition的pattern,去toggle尽量多的晶体管off。等待5~10ms。Step5: 量测流过VDD上的电流。Step6: 重复上述的step2到step5的步骤大概5~10次,取读出的平均值。跟datasheet中的规范进行比较。各种测试的测试覆盖率的大概情况如下面图(16)所示:图(16)如上图所示,hardware直接量测是最直接的方法,但是这种方法可以测试的电路有限,很多内部电路无法通过这种方法完成。而Stuck At测试和IDDQ测试的组合,可以有效的在时间和成本经济的情况下提高测试覆盖率。3其它的Hardware测试介绍连通性测试介绍连通性测试是测试芯片的管脚是否有确实连接到测试机之上,芯片的管脚之间是否有短路的一种测试,通常情况下,这项测试会放在第一项进行,因为连通性测试可以很快发现测试机的setup问题,以及芯片管脚开短路的问题,从而在第一时间发现bad dut,节省测试成本。如下图(17)所示的一个封装芯片的剖面图,造成连通性失效主要有这几个原因:a) 制造过程中的问题,引起某些pin脚的开短路。b) 封装中的missing bonding wires,会造成开路。c) 静电问题,造成某个pin被打坏从而造成开短路问题。d) 封装过程中造成的die crack或者某个pin脚的弯曲。图(17)这个测试主要是去测试pin的ESD保护二极管。一般情况下,会把open/short测试放在一个项目里同时测试,也有情况是需要分开测试这两个项目。测试某个pin到ground/其它pin之间的连通性,如下图(18),图(18)Step1: 所有不测试的pin都置0v。Step2: 在需要测试的pin上source一个-100uA的电流。Step3: 量测这个在测试的pin上的电压--如果tester与这个测试pin接触很好,并且这个pin本身没有任何的开路或者短路到VDD/ground/其它的pin脚上,那么理想的测试到的电压会是-0.7v。--如果这个在测试的pin有开路的fault,会量测到一个大的负电压。--如果这个在测试的pin有短路到vdd/ground/其它的pin上,会量测到一个接近0v的电压。考虑到实际的电路的情况,一般limit设置为-1.5V ~-0.2V。测试某个pin到VDD/其它pin之间的连通性,如下图(19)图(19)Step1: 所有不测试的pin都置0v。Step2: 在需要测试的pin上source一个100uA的电流。Step3: 量测这个在测试的pin上的电压。--如果tester与这个测试pin接触很好,并且这个pin本身没有任何的开路或者短路到VDD/ground/其它的pin脚上,那么理想的测试到的电压会是0.7v。--如果这个在测试的pin有开路的fault,会量测到一个大的正电压。--如果这个在测试的pin有短路到vdd/ground/其它的pin上,会量测到一个接近0v的电压。考虑到实际的电路的情况,一般limit设置为0.2V~1.5V。DC参数测试(DC Parameters Test)DC参数的测试,一般都是force电流测试电压或者force电压测试电流,主要是测试阻抗性。一般各种DC参数都会在datasheet里面标明,测试的主要目的是确保delivery的芯片的DC参数值符合规范。IDD测试IDD测试(或者叫做ICC测试),在CMOS电路中是测试Drain to Drain的流动电流的,在TTL电路中是测试Collector to Collector的流动电流。如下面图(20)所示:Gross IDD/ICC Test (power pin short test)电源pin的短路测试,通常Open/short测试后马上进行,如果在制造过程中有issue,导致了电源到地的短路,会测试到非常大的电流,也会反过来损害到测试机本身。测试的基本方法如下面图(21)所示图(21)Step1: 给VDD上最高电压,并且tester的电压源设定一个钳制电流,防止电流过大损测试机。Step2: 所有的输入pin置高,所有的输出pin置0. 等待5~10ms。Step3: 量测流过VDD上的电流,正向或者反向电流过高都说明电源到地短路了。Static IDD/ICC Test (静态功耗测试)这个项目是测试当芯片在静态或者idle state的情况下,流过VDD的漏电,这个参数对低功耗应用场景特别重要;这项测试也能检测出一些在制造中产生的margin defect,这些defect非常有可能会给芯片带来潜在的可靠性风险。测试方法与下面图(22)所示图(22)Step1: 给VDD上最高电压,并且tester的电压源设定一个钳制电流,防止电流过大损测试机。Step2: 跑pre-condition pattern,把芯片设置到低功耗状态。等待5~10ms。Step3: 量测流过VDD上的电流,根据datasheet中的标识设定limit,超过limit即表示坏品。Dynamic IDD/ICC Test (动态功耗测试)这个项目是测试当芯片在不停地运行某种function的情况下,流过VDD的电流。这个类似于某种工作情况下的功耗,需要meet产品spec中的值,对于功耗要求严格的应用方案,此项指标非常重要。测试方法如下面图(23)所示:图(23)Step1: 给VDD上最高电压,并且tester的电压源设定一个钳制电流,防止电流过大损测试机。Step2: 让芯片持续不断的运行特定的pattern,等待5~10ms。Step3: 量测流过VDD上的电流,根据datasheet中的标识设定limit,超过limit表示坏品。Leakage测试芯片内部晶体管不可能在理想的状态,因此或多或少会存在一定的漏电流,需要测试漏电,保证漏电是在正常的允许的范围内,而不是潜在的defect。Input Leakage Test(IIH and IIL)IIH是当芯片的某个input pin被设定为输入VIH时,从这个input pin到芯片的ground之间的漏电流,如下图(24)所示图(24)IIL是当芯片的某个input pin被设定为输入VIL时,从芯片的VDD 到这个input pin的之间的漏电流,如下图(25)所示图(25)Output Tristate Leakage Test(IOZL and IOZH)Tristate表示的是输出pin是高阻状态,当这个时候,如果输出pin上有电压VDD,那么从输出pin到芯片的ground上会有漏电(IOZH);如果输出pin接地,那么从芯片的VDD到这个输出pin上也会有漏电(IOZL),如下面图(26)所示,这些漏电必须保持在spec规定的范围内,以确保芯片的正常工作,不会有潜在的defect产生。图(26)Output Logic Low DC Test(VOL/IOL)VOL表示的是当输出pin为状态low的时候的最大电压,IOL表示的是在此种状态下这个输出pin的最大的电流驱动能力,这个项目是测试当此状态下的输出pin对地的电阻大小,如下面图(27)所示。图(27)Output Logic High DC Test(VOH/IOH)VOH表示的是当输出pin为状态high的时候的最小电压,IOH表示的是在此种状态下这个输出pin的最大的电流驱动能力,这个项目是测试当此状态下的芯片的VDD到这个输出pin的电阻大小,如下面图(28)所示。图(28)随着芯片工艺越来越先进,晶体管密度越来越高,芯片测试的复杂度和难度也成倍地增长。本文通过各种失效模式及检测机理的讨论,梳理了一下基本的测试概念。后续我们会再针对混合信号测试、RF测试、DFT测试进行一些探讨,谢谢!文章来源于桃芯科技 ,作者桃可芯以上一文,仅供参考! 欢迎来电咨询合明科技芯片焊前锡膏清洗剂,芯片封装清洗剂,PCBA焊后助焊剂锡膏清洗剂,电子元器件焊接助焊剂,SIP系统级封装芯片水基清洗方案,表面贴装元器件焊后清洗剂,PCB波峰焊清洗剂,治具助焊剂清洗剂,助焊剂清洗剂,PCB治具清洗剂,PCB助焊剂清洗剂,合明科技,SMT电子制程水基清洗全工艺解决方案,汽车用 IGBT芯片封装焊后清洗剂,IGBT芯片清洗剂,IGBT模块焊后锡膏清洗剂,IGBT功率半导体模块清洗,SMT锡膏回流焊后清洗剂,PCBA焊后水基清洗剂,系统封装CQFP器件焊后助焊剂清洗剂、SIP芯片焊后清洗剂、BMS电路板焊后清洗剂,半导体分立器件除助焊剂清洗液、半水基清洗剂、IGBT功率模块焊后锡膏水基清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 光收发模块清洗剂合明科技分享:一文了解光通讯光模块知识

    2020-03-23

    光收发模块清洗剂合明科技分享:一文了解光通讯光模块知识

    光收发模块清洗剂合明科技分享:一文了解光通讯光模块知识光模块简称光收发模块,用于在光纤网络和普通超五类网线之间的数模转换。也就是把光通信的数字信号转换为网线承载的模拟信号,相当于一种编码解码设备。有单模单纤与单模多纤、多模多纤等区别,具体表现在传输距离方面,单模光纤的传输距离最长可达20公里,多模光纤大概只有1-2公里,两种收发器不能互相混用,必须成对使用,否则信号无法接通。目前,国内企业在光通信产 品的参数测试过程中主要使用国内外的先进测试设备,各种测试仪器之间大多是孤立存在,且用手动调试仪器控制面板上的各种旋钮、按钮和人眼观看仪器上的波形 或数据,这样不仅测试过程操作繁杂、容易出错,而且测试效率非常低,因此提高效率、降低成本、实现光通信模块测试自动化成为提高光电企业市场竞争力的关键 之一。光模块最基本几个的测试参数:一个光模块的成品,看似简单。其实生产一个产品,是需要经过多道的检测的。在测试中,有几个参数是非常重要的,只有这些参数符合相关标准,才能使光模块性能最佳。您知道是哪几个测试参数吗?现在让我们细细道来吧!1.发射光功率发射光功率指发射端的光强度,以dBm为单位,是影响传输距离的重要参数。测试时,需要注意发射器输出波形的波长和形状,以及接收器的抖动容限和带宽,测试发射器时,需要注意以下两点:1、用来测试发射器的输入信号的质量必须足够好。此外,还必须通过抖动测量和眼图测量来确认电气测量的质量。眼图测量是检查发射器输出波形的常见方法,因为眼图包含了丰富的信息,能够反映出发射器的整体性能。2、发射器的输出光信号必须用眼图测试、光调制振幅和消光比等光学质量指标来测量。2.接收灵敏度接收灵敏度指可以探测到的光强度,以dBm为单位。一般情况下,速率越高接收灵敏度越差,即最小接收光功率越大,对于光模块接收端器件的要求也越高。测试接收器时,同样需要注意以下两点:1、与测试发射器不同的是,测试接收器时,光信号的质量必须足够差,因此,必须创造出一种代表最差信号的光压力眼图,这种最差的光信号必须通过抖动测量和光功率测试来进行校准。2、最后,需要测试接收器的电子输出信号,这种测试主要有三个种类:眼图测试,这样能保证眼图的“眼睛”处于张开状态。眼图测试通常由误码率的深度实现抖动测试,测试不同类型的抖动抖动跟踪和容限,测试内部时钟恢复电路对抖动的跟踪情况。3.偏置电流为了使激光器LD高速开关正常工作,必须对它加上略大于阈值电流ITH的直流偏置电流IBIAS,直接用BIAS表示。BIAS过大会加速器件的老化,BIAS太小激光器无法正常工作。4.消光比信号逻辑为1时的光功率与为0时的光功率的大小之比,单位为dB。消光比和光功率成反比关系,在调试过程中会发现把光功率调大消光比会变小,反之把光功率调小消光比会变大。5.饱和光功率在一定的传输速率下,维持一定的误码率时的最大输入光功率。当接收光功率大于饱和光功率的时候同样会导致误码产生。因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。6.工作温度光模块工作温度分两种。商业级:0~70℃,工业级:-40~85℃。文章来源: 孔令图 电子制造工艺技术以上一文,仅供参考! 欢迎来电咨询合明科技光模块通讯模块锡膏清洗剂,芯片封装焊后焊膏清洗剂、芯片焊后球焊膏、 芯片焊后锡膏 、芯片焊后清洗 、助焊剂清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 环保水基清洗剂合明科技分享:《清洗剂挥发性有机化合物含量限值》国家强制性标准正式颁布

    2020-03-26

    环保水基清洗剂合明科技分享:《清洗剂挥发性有机化合物含量限值》国家强制性标准正式颁布

    环保水基清洗剂合明科技分享:《清洗剂挥发性有机化合物含量限值》国家强制性标准正式颁布近日,国家市场监督管理总局、国家标准化管理委员会联合发布《中华人民共和国国家标准公告(2020年第2号)》,批准公布了《木器涂料中有害物质限量》、《清洗剂挥发性有机化合物含量限值》等7项国家标准。其中,《清洗剂挥发性有机化合物含量限值》(简称为《清洗剂限值》标准)标准号为GB 38508-2020,将于2020年12月1日起实施。据悉,《清洗剂限值》标准是根据国务院《“十三五”节能减排综合工作方案》(国发[2016]74号)中“出台涂料、油墨、胶黏剂、清洗剂等有机溶剂产品挥发性有机物含量限值强制性环保标准”、《国务院关于印发打赢蓝天保卫战三年行动计划的通知》(国发〔2018〕22号文)中“完成涂料、油墨、胶粘剂、清洗剂等产品VOCs含量限值强制性国家标准制定工作”、工业和信息化部《2019年工业通信业标准化工作要点》中“加快推进清洗剂等产品中挥发性有机物(VOCs)含量限值等重点强制性国家标准制修订”等文件要求进行编制的。众所周知,在工业生产中,为了去除各种污垢,清洗剂得到了广泛应用,已经成为重要的一类化学品。配制清洗剂时,加入一定量的挥发性有机化合物(VOCs),可以大大提高清洗剂对含油类污垢的清除能力。编制《清洗剂限值》标准,可以从源头限制VOCs物质的添加比例,减少清洗剂中VOCs物质的使用。《清洗剂限值》标准根据清洗剂成分的组成,将清洗剂分为水基清洗剂、半水基清洗剂和有机溶剂清洗剂三类,分四项“挥发性有机化合物(VOCs)含量限值”、“二氯甲烷、三氯甲烷、三氯乙烯、四氯乙烯总和”、“甲醛”、“苯、甲苯、二甲苯和乙苯总和”对清洗剂产品提出了限值要求。《清洗剂限值》标准还提出了低挥发性有机化合物限值要求,并规定了含挥发性有机化合物清洗剂产品的检验方法和包装标志。 来源:中清协以上一文,仅供参考! 欢迎来电咨询合明科技水基水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

  • 怎么正确挑选钢网清洗机公司?

    2020-03-27

    怎么正确挑选钢网清洗机公司?

    钢网清洗机已经成为工业生产中必不可少的smt清洗设备,也正是因为如此从而带动了钢网清洗机品牌公司的发展。钢网清洗机在工业应用方面已经极其普遍,面对众多的钢网清洗机设备厂家该如何选择合适又价格合理的呢?因此在众多的品牌中如何选择钢网清洗机便成了厂家们最关心的问题。正确选择钢网清洗机的方法如下:一、 选用钢网清洗机时的具体要求:1、 清洗钢/丝网的干净程度,包括模式及设备的稳定性;2、 钢网清洗机是否使用全气动运行,德正钢网清洗机清洗不用电,杜绝了火灾等安全隐患3、 钢网清洗机应具有高可靠性,应能在苛刻的工业加工环境下连续工作;4、 钢网清洗机本身应具有良好的维护性,有故障诊断和连锁功能,停机时间要短;5、 操作简单方便,控制键功能明确,能拒绝非法操作,保护设备不受损坏。二、要注重质量和服务产品质量与服务是企业在提升竞争力方面一个不可忽略的环节。试想如果一个公司购买的钢网清洗机设备效率比较低,那么这样的设备让企业如何去生产,怎样去回收成本,怎样去提高经济效益呢?生产这样钢网清洗设备的公司其口碑也一定不会好。选购钢网清洗机的首要因素是设备的性能要稳定,质量要好。目前,很多小型钢网清洗机厂家都存在很多产品的质量的问题。这就要求我们在购买的时候要擦亮眼睛,要分析它的结构、了解它的机械性能是不是合理可靠,软件控制是不是方便操作等。任何一台钢网清洗设备在使用过程中都会出现不同程度的损坏,那么在损坏后进行维修而言,维修是否及时与收费高低也就成为了第二个需要考虑的问题了。所以在购买是要通过多种渠道了解企业的售后服务问题了,比如说响应机制是怎样的,维修收费是否合理等等。

  • 钢网清洗机正规的厂家哪家质量好?

    2020-04-01

    钢网清洗机正规的厂家哪家质量好?

    钢网清洗机在工业应用方面已经极其普遍,成为工业生产中必不可少的smt清洗设备,也正是因为如此从而带动了钢网清洗机品牌公司的发展,那么面对众多的钢网清洗机设备厂家该如何选择合适又价格合理的呢?钢网清洗机正规的厂家哪家质量最好呢?让合明科技来给大家说一说选择一台好的钢网清洗机要充分考虑它的安全稳定、超强洁净能力、节省溶济、占地小、服务全面,这样才能选择比较实用的产品。一种是靠水的反作用力而实现自转;一种是用气动马达带动实现自转;喷杆旋转了,喷杆上的喷嘴(头)也就按照360度进行旋转,实现对钢网的全方位清洗。根据合明科技小编多年的经验,钢网清洗机的选择应该从以下几个方面来考虑:1、首先产品质量要过硬,钢材一定要好,大多数溶剂的腐蚀性较强,如果钢材被腐蚀了,整个机器就等于报废了;2、方便、安全、效率高,最好采用全气动的,完全不用电,避免了火灾隐患;3、对操作人员来讲简单实用易操作,界面功能一目了然,最好是一键式操作;4、能根据客户提出的不同要求做及时的方案调整,销售人员同时也是技术专员;5、价格公道合理;要特别注意“假洋鬼子”,明明国内生产,却打着国外进口的旗号欺骗消费者,没有诚信可言;6、售后服务要周到及时,保修期限越长越好。购买钢网清洗机是一个很简单的过程,而选择钢网清洗设备品牌才是最关键的,需要多考察的。此外,钢网清洗机价格也是要重点考虑的参考因素。在此合明科技小编提醒大家自己在使用过程中要抓住机会,学会简单的钢网清洗机设备维护常识,这样才能使用好钢网清洗机。

  • PCBA组件焊剂清洗剂合明科技分享:PCBA电子组装EMS代工焊接验收(一)

    2020-04-03

    PCBA组件焊剂清洗剂合明科技分享:PCBA电子组装EMS代工焊接验收(一)

    PCBA组件焊剂清洗剂合明科技分享:PCBA电子组装EMS代工焊接验收①、IPC-A-610D基础知识PCBA生产制程必须遵循严格的国际标准,方能保证PCBA板的批量生产一致性,将良率控制在预期范围内。针对PCBA的国际标准,必须要提到应用最为广泛的IPC-A-610E电子组装接受性标准。它是所有检验员、管理者和培训者的基本指南,展示了电子制造过程中的接受性工艺条件。IPC-A-610D是由IPC(电子线路及互连组装协会)产品保证委员会制定的关于电子组装外观质量验收条件要求的文件。即一个通用工业标准,目的在于汇集一套在PCBA电子厂家和PCBA硬件终端客户中通用的电子装配目视检查标准。描述PCB印制板和PCBA电子组件的各种高于产品最低可接收要求的装连结构特点的图片说明性文件,同时描叙了各种不受控(不合格)的结构形态以辅助生产现场管理人员及时发现或纠正问题。可接收条件 (1)目标条件:是指近乎完美或被称之为“优选”。当然这是一种希望达到但不一定总能达到的条件,对于保证组件在使用环境下的可靠运行也并不是非打到不可。(2)可接收条件:是指组件在使用环境中运行能保证完整、可靠但不上完美。可接收条件稍高于最终产品的最低要求条件。(PCB 印刷电路板未贴上元器件)(3)缺性条件:是指组件在使用环境下其完整、安装或功能上可能无法满足要求。这类产品可以根据设计、服务和用户要求进行返工、维修、报废。(PCBA 印刷电路板已焊上元器件)(4)制程警示条件:过程警示是指没有影响到产品的完整、安装和功能但存在不符合要求条件(非拒收)的一种情况。例如SMT片式元件翻件情况。(5)未涉及的条件:除非被认定对最终用户规定的产品完整、安装和功能产生影响,拒收和过程警示条件以外那些未涉及的情况均被认为可接收。②电子组件的操作2.1、操作准则:a)保持工作站干净整洁,在工作区域不可有任何食品、饮料或烟草制品。b)尽可能减少对电子组件的操作,防止损坏。c)使用手套时需要及时更新,防止因手套脏引起污染。d)不可用裸手或手指接触可焊表面.人体油脂和盐分会降低可焊性、加重腐蚀性,还会导致其后涂覆和层压的低粘附性.e)不可使用未经认可的手霜,它们会引起可焊性和涂覆粘附性的问题.f)绝不可堆叠电子组件,否则会导致机械性损伤.需要在组装区使用特定的搁架用于临时存放.(SMT生产车间员工ESD静电防护)g)对于没有ESDS标志的部件也应作为ESDS部件操作.h)人员必须经过培训并遵循ESD规章制度执行.j)除非有合适的防护包装,否则决不能运送ESDS设备.来源:SMT行业头条 精益诺自动化以上一文,仅供参考! 欢迎来电咨询合明科技印制板助焊剂清洗剂、功率模块锡膏清洗剂,微波功率芯片焊后清洗剂、IGBT功率器件封装焊后清洗剂、晶圆级封装焊后清洗剂、芯片封装焊后焊膏清洗剂、芯片焊后球焊膏、 芯片焊后锡膏 、芯片焊后清洗 、助焊剂清洗剂、PCB组件封装焊后水性环保清洗剂、SMT封装焊后清洗剂、精密电子清洗剂、半导体分立器件清洗剂、SMT焊接助焊剂清洗剂、锡嘴氧化物清洗剂、PCBA清洗剂、芯片封装焊后清洗剂、水性清洗剂、FPC清洗剂、BGA植球后清洗剂、球焊膏清洗剂、FPC电路板水基清洗剂、堆叠组装POP芯片清洗剂、油墨丝印网板水基清洗全工艺解决方案、BMS新能源汽车电池管理系统电路板制程工艺水基清洗解决方案、储能BMS电路板水基清洗剂、PCBA焊后助焊剂清洗剂、组件和基板除助焊剂中性水基清洗剂、功率电子除助焊剂水基清洗剂、功率模块/DCB、引线框架和分立器件除助焊剂水基清洗剂、封装及晶圆清洗水基清洗剂、倒装芯片水基清洗、SIP和CMOS芯片封装焊后清洗剂、SMT钢网、丝网和误印板清洗除锡膏、银浆、红胶,SMT印刷机网板底部擦拭水基清洗剂、焊接夹治具、回流焊冷凝器、过滤网、工具清洗除被焙烤后助焊剂和重油污垢清洗剂,电子组件制程水基清洗全工艺解决方案。

上门试样申请 0755-26415802 top